Background: The diagnosis of pseudo-responses after bevacizumab treatment is difficult. Because diffusion-weighted imaging (DWI) is associated with cell density, it may facilitate the differentiation between true- and pseudo-responses. Furthermore, as high b-value DWI is even more sensitive to diffusion, it has been reported to be diagnostically useful in various clinical settings.
Materials And Methods: Between September 2008 and May 2011, 10 patients (5 males, 5 females; age range 6-65 years) with recurrent glioma were treated with bevacizumab. All underwent pre- and post-treatment MRI including T2- or FLAIR imaging, post-gadolinium contrast T1-weighted imaging, and DWI with b-1000 and b-4000. Response rates were evaluated by MacDonald- and by response assessment in neuro-oncology working group (RANO) criteria. We also assessed the response rate by calculating the size of high intensity areas using high b-value diffusion-weighted criteria. Prognostic factors were evaluated using Kaplan-Meier survival curves (log-rank test).
Results: It was easier to identify pseudo-responses with RANO- than MacDonald criteria, however the reduction of edema by bevacizumab rendered the early diagnosis of tumor progression difficult by RANO criteria. In some patients with recurrent glioma treated with bevacizumab, high b-value diffusion-weighted criteria did, while MacDonald- and RANO criteria did not identify pseudo-responses at an early point after the start of therapy.
Discussion And Conclusion: High b-value DWI reflects cell density more accurately than regular b-value DWI. Our findings suggest that in patients with recurrent glioma, high b-value diffusion-weighted criteria are useful for the differentiation between pseudo- and true responses to treatment with bevacizumab.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2011.10.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!