Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to low mechanical properties. In this study, we investigated the effectiveness of a chitosan fiber reinforcement approach to enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of fiber/scaffold mass ratio, fiber mechanical properties and fiber length on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced, heart valve scaffold achieved leaflet tensile strength values of 220±17 kPa, comparable to the radial values of human pulmonary valve leaflets. Additionally, the effects of 2 mm fibers were found to be up to threefold greater than 10 mm fibers at identical mass ratios. Heparin crosslinking of fibers produced a reduction in fiber strength, and thus failed to produce additional improvements to fiber-reinforced scaffold properties. Despite this reduction in fiber strength, heparin-modified fibers still improved the mechanical properties of reinforced scaffolds, but to a lesser extent than unmodified fibers. The results demonstrate that chitosan fiber reinforcement can be used to achieve porous chitosan scaffold strength approaching that of tissue, and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2011.08.021 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.
Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, CCIT216, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
Purpose: Simulation studies, such as finite element (FE) modeling, offer insights into knee joint biomechanics, which may not be achieved through experimental methods without direct involvement of patients. While generic FE models have been used to predict tissue biomechanics, they overlook variations in population-specific geometry, loading, and material properties. In contrast, subject-specific models account for these factors, delivering enhanced predictive precision but requiring significant effort and time for development.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan, ROC.
In the previous study, discarded oyster farming bamboo scaffolding (BS) demonstrated the potential for application in pulping and papermaking through the soda pulping process. However, soda pulping involves high temperatures and chemical dosages. Therefore, this study develops an alternative pulping process to lower temperature and chemical demands by utilizing a high-consistency kneader (HCK), simultaneously promoting the utilization of BS in pulping and papermaking.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!