Background: Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes.

Results: We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO) on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures.

Conclusions: This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228709PMC
http://dx.doi.org/10.1186/1756-0500-4-504DOI Listing

Publication Analysis

Top Keywords

predictive models
12
lead identification
12
models anti-tubercular
8
machine learning
8
fast efficient
8
large compound
8
compound libraries
8
anti-tubercular
4
anti-tubercular molecules
4
molecules machine
4

Similar Publications

The feasibility of using machine learning to predict COVID-19 cases.

Int J Med Inform

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:

Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.

View Article and Find Full Text PDF

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Feeding pigs lipids containing high levels of lipid oxidation products (LOP) has been shown to reduce growth performance, but data is lacking on quantitative relationships between LOP and pig growth, feed intake and feed efficiency. Four experiments (EXP) were conducted using soybean oil (SO) in EXP 1, 2, and 3, as well as SO, choice white grease (CWG) and palm oil (PO) in EXP 4, to evaluate the impact of feeding diets containing different amounts of LOP on pig performance. Lipid peroxidation was carried out using variable heating temperatures and durations to generate lipids with a broad range of peroxide (PV, mEq) and anisidine value (AnV, unitless).

View Article and Find Full Text PDF

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

A Nomogram utilizing ECG P-wave parameters to predict recurrence risk following catheter ablation in paroxysmal atrial fibrillation.

J Cardiothorac Surg

January 2025

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.

Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.

Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!