Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia.

J Surg Res

Transplantation Unit, Surgery Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.

Published: April 2012

Background: The shortage in donor livers has led to increased use of allografts derived from donation after cardiac death (DCD). The compromised viability in these livers leads to inferior post-transplantation allograft function and survival compared with donation after brain death (DBD) donor grafts. In this study, we reconditioned DCD livers using an optimized normothermic machine perfusion system.

Methods: Livers from 12 Yorkshire pigs (20-30 kg) were subjected to either 0 min (WI-0 group, n = 6) or 60 min (WI-60 group, n = 6) of warm ischemia and 2 h of cold storage in UW solution, followed by 4 h of oxygenated sanguineous normothermic machine perfusion. Liver viability and metabolic function were analyzed hourly.

Results: Warm ischemic livers showed elevated transaminase levels and reduced ATP concentration. After the start of machine perfusion, transaminase levels stabilized and there was recovery of tissue ATP, coinciding with an increase in bile production. These parameters reached comparable levels to the control group after 1 h of machine perfusion. Histology and gross morphology confirmed recovery of the ischemic allografts.

Conclusion: Our data demonstrate that metabolic and functional parameters of livers with extended warm ischemic time (60 min) can be significantly improved using normothermic machine perfusion. We hereby compound the existing body of evidence that machine perfusion is a viable solution for reconditioning marginal organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682784PMC
http://dx.doi.org/10.1016/j.jss.2011.09.057DOI Listing

Publication Analysis

Top Keywords

machine perfusion
28
normothermic machine
16
dcd livers
8
livers extended
8
extended warm
8
warm ischemia
8
warm ischemic
8
transaminase levels
8
machine
7
perfusion
7

Similar Publications

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.

View Article and Find Full Text PDF

A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors.

Nat Commun

January 2025

General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.

To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP.

View Article and Find Full Text PDF

Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP.

View Article and Find Full Text PDF

A Novel Machine Perfusion System for Enhancing Hepatic Microcirculation Perfusion.

Artif Organs

December 2024

Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Machine perfusion is a promising strategy for safeguarding liver transplants donated after cardiac death (DCD). In this study, we developed and validated a novel machine perfusion approach for mitigating risk factors and salvaging severe DCD livers.

Methods: A novel hypothermic oxygenated perfusion (HOPE) system was developed, incorporating two pumps and an elastic water sac to emulate the functionality of the cardiac cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!