Diuretics and salt transport along the nephron.

Semin Nephrol

Division of Nephrology, Rochester General Hospital, University of Rochester School of Medicine and Dentistry, Rochester, NY 14621, USA.

Published: November 2011

The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semnephrol.2011.09.002DOI Listing

Publication Analysis

Top Keywords

diuretics salt
4
salt transport
4
transport nephron
4
nephron clinical
4
clinical diuretics
4
diuretics uniformly
4
uniformly predated
4
predated localization
4
localization site
4
site action
4

Similar Publications

Na-K-Cl cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear.

View Article and Find Full Text PDF

Background Heart failure (HF) is commonly managed by addressing water and sodium (Na) balance, with arterial circulation playing a major role in influencing renal Na and water excretion. Recently, chloride (Cl) has been recognized as an important factor in HF, associated with volume regulation and its modulation of renin-angiotensin-aldosterone system (RAAS) activity through macula densa signaling, which impacts Na retention and neurohormonal activation. Acetazolamide, a carbonic anhydrase inhibitor, can enhance decongestion in HF by increasing urinary Na and Cl excretion when added to loop diuretics, a mechanism supported by prior studies demonstrating improved urine output and decongestion.

View Article and Find Full Text PDF

Diuretic Potentiation Strategies in Acute Heart Failure.

JACC Heart Fail

January 2025

Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA; Baylor Scott and White Research Institute, Baylor Scott and White Health, Dallas, Texas, USA. Electronic address:

Several trials have evaluated diuretic-based strategies to improve symptoms and outcomes in patients with acute heart failure (AHF). The authors sought to summarize the effect of different combination strategies on symptoms, physical signs, physiological variables, and outcomes in patients with AHF. Twelve trials were identified that assessed the addition of thiazide diuretics, sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor antagonists, vasopressin receptor antagonists, carbonic anhydrase inhibitors, or loop diuretic intensification to conventional therapy for AHF.

View Article and Find Full Text PDF

Inflammatory Pathways of Sulfonamide Diuretics: Insights into SLC12A Cl Symporters and Additional Targets.

Cell Physiol Biochem

January 2025

Department of Pharmacology and Toxicology, Wright State University, School of Medicine. Dayton, Ohio, United States,

Thiazide, thiazide-like, and loop diuretics are primarily known for inhibiting members of the SLC12A family of Cl transporters, which include the Na+Cl cotransporter (NCC), NaK2Cl cotransporters (NKCC1 and NKCC2) and KCl symporters (KCC1-4). While the main pharmacological effect of these diuretics is diuresis, achieved by promoting the excretion of excess water and salt through the kidneys, they have intriguing pharmacological effects beyond their traditional ones which cannot be solely attributed to their effects on renal salt transport. Of particular interest is their role in modulating inflammatory processes.

View Article and Find Full Text PDF

Patterns of diuretic titration during inpatient management of acute decompensated heart failure.

Am Heart J

December 2024

Department of Internal Medicine, Division of Cardiovascular Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT.

Introduction: Hospitalization rates for acute decompensated heart failure (ADHF) have increased, resulting in 6.5 million hospital days annually. Despite this, optimal diuretic strategies for managing ADHF remain unclear, highlighting the need to analyze diuretic practice patterns in ADHF treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!