Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro RNAs (miRNAs) constitute a unique class of small, non-coding ribonucleic acids (RNAs) that regulate gene expression at the post-transcriptional level. The presence of two inducible miRNAs, miRNA-125b and miRNA-146a, involved in respectively, astroglial cell proliferation and in the innate immune and inflammatory response, is significantly up-regulated in human neurological disorders including Alzheimer's disease (AD). In this study we analyzed abundances miRNA-125b and miRNA-146a in magnesium-, iron-, gallium, and aluminum-sulfate-stressed human-astroglial (HAG) cells, a structural and immune-responsive brain cell type. The combination of iron- plus aluminum-sulfate was found to be significantly synergistic in up-regulating reactive oxygen species (ROS) abundance, NF-кB-DNA binding and miRNA-125b and miRNA-146a expression. Treatment of metal-sulfate stressed HAG cells with the antioxidant phenyl butyl nitrone (PBN) or the NF-кB inhibitors curcumin, the metal chelator-anti-oxidant pyrollidine dithiocarbamate (PDTC), or the resveratrol analog CAY10512, abrogated both NF-кB signaling and induction of these miRNAs. Our observations further illustrate the potential of physiologically relevant amounts of aluminum and iron sulfates to synergistically up-regulate specific miRNAs known to contribute to AD-relevant pathogenetic mechanisms, and suggest that antioxidants or NF-кB inhibitors may be useful to quench metal-sulfate triggered genotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342640 | PMC |
http://dx.doi.org/10.1016/j.jinorgbio.2011.05.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!