Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2011.08.003DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
gene expression
8
populations expressed
8
msc
6
populations
5
cells
5
comprehensive transcriptome
4
transcriptome immunophenotype
4
immunophenotype analysis
4
analysis renal
4

Similar Publications

Low-dose methotrexate in Rheumatology: A reinvented drug.

J R Coll Physicians Edinb

January 2025

Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India.

Low-dose methotrexate (LD-MTX) is the anchor drug used in the treatment of various rheumatological illnesses. There are a lot of misconceptions associated with the long-term use of MTX in the minds of practitioners. The origin of most of these myths stems from the ill effects associated with high-dose MTX used in cancer chemotherapy.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH), is characterized by systemic uncontrolled inflammation resulting from immune dysregulation secondary to various triggers, including genetics, infections, autoimmune diseases, and malignancies. Macrophage activation syndrome (MAS) is an immune dysregulation phenomenon, in which an underlying rheumatological disease is present. We report a rare, interesting case of a middle-aged female, with a systemic lupus erythematosus (SLE) flare complicated by macrophage activation syndrome (MAS), in which tuberculous meningitis (TBM) was the identified trigger.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is an immunologic syndrome characterized by excessive inflammation and tissue injury due to uncontrolled activation of the phagocytic system. The underlying mechanism is a lack of downregulation of activated macrophages and lymphocytes by natural killer and T cells. Unfortunately, the diagnosis is often delayed or missed due to the rarity of the disease, decreased awareness, and clinical picture variability.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is a non-neoplastic proliferation and macrophage activation that induces cytokine-mediated bone marrow suppression and features of intense phagocytosis in the bone marrow and liver, leading to multi-organ dysfunction and ultimate failure. The diagnosis of HLH in an intensive care setting is challenging, and it is associated with high morbidity and mortality. HLH-94 is the standard protocol for treatment, consisting of dexamethasone and chemotherapy like etoposide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!