The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218331 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.10.004 | DOI Listing |
Chembiochem
December 2024
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China.
We have examined in this contribution the electrostatic interactions between single arginine and aspartic acid by analyzing the peptide-peptide binding characteristics involving arginine-aspartic acid, arginine-glycine, arginine-tryptophan and tryptophan-glycine interactions. The results of aspartic acid mutagenesis revealed that the interactions between arginine and aspartic acid have significant dependence on the position and composition of amino acids. While the primary interaction can be attributed to arginine-tryptophan contacts originated from the indole moieties with the main chains of 14-mers containing N-H and C=O moieties, pronounced enhancement could be identified in association with the electrostatic side-chain-side-chain interactions between arginine and aspartic acid.
View Article and Find Full Text PDFACS Omega
November 2024
Centre de Recherches Insulaires et Observatoire de l'Environnement, UAR 3278 UPVD-CNRS-EPHE-PSL Labex CORAIL, Université de Perpignan Via Domitia, Perpignan 66860, France.
In this study, we report an easy synthetic pathway to vinyl monomers derivatized with amino acids. Tyrosine-, phenylalanine-, tryptophan-, leucine-, and methionine-based monomers were synthesized, and their polymerization in the presence of cross-linking agents led to the formation of amino acid-based gels. The nature of cross-linker, the time of polymerization, and the type of initiation (photopolymerization or thermopolymerization) were investigated.
View Article and Find Full Text PDFCell Rep Phys Sci
October 2024
Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
Tryptophan and its metabolites, produced by the gut microbiota, are pivotal for human physiological and mental health. Yet, quantifying these structurally similar compounds with high specificity remains a challenge, hindering point-of-care diagnostics and targeted therapeutic interventions. Leveraging the innate specificity and adaptability of biological systems, we present a biosensing approach capable of identifying specific metabolites in complex contexts with minimal cross-activity.
View Article and Find Full Text PDFBMC Chem
November 2024
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
In recent years, there has been considerable interest in using amino acids like tryptophan (Trp) and tyrosine (Tyr) as biomarkers for various diseases, including type 2 diabetes mellitus (T2D). In diseases like T2D, the metabolism of Trp and Tyr is altered. The activity of enzymes involved in Trp metabolism increases, leading to a decrease in its serum level.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania.
Magnetic nanoparticles (MNPs) are of great interest for their wide applications in biomedical applications, such as bioimaging, antitumoral therapies, regenerative medicine, and drug delivery. The work aimed to obtain biocompatible magnetite nanoparticles coated with amino acids of the general formula FeO@AA (AA = L-tryptophan, L-serine, L-proline and L-cysteine) for potential therapeutic application in anticancer drug delivery. The obtained materials were characterised using XRD, FTIR, DLS analysis, SEM, thermogravimetry (TG), differential scanning calorimetry (DSC), and UV-vis spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!