Mutations of the small GTP-binding protein Ras have been commonly found in tumors, and Ras oncogenes have been established to be involved in the early steps of cancerogenesis. The detection of Ras activity is critical in the determination of the cell signaling events controlling cell growth and differentiation. Therefore, development of improved methods for primary screening of novel potential drugs that target small GTPase or their regulators and their signaling pathways is important. Several assays have been developed for small GTPases studies, but all these methods have limitations for a high-throughput screening (HTS) use. Multiple steps including separation, use of radioactive labels or time-consuming immunoblotting, and a need of large quantities of purified proteins are decreasing the user-friendliness of these methods. Here, we have developed a homogeneous H-Ras activity assay based on a single-label utilizing the homogeneous quenching resonance energy transfer technique (QRET). In the QRET method, the binding of a terbium-labeled GTP (Tb-GTP) to small GTPase protein H-Ras protects the signal of the label from quenching, whereas the signal of the nonbound fraction of Tb-GTP is quenched by a soluble quencher. This enables a rapid determination of the changes in the activity status of Ras. The assay optimization showed that only 60 nM concentration of purified H-Ras protein was needed. The functionality of the assay was proved by detecting the effect of H-Ras guanine nucleotide exchange factor, Son of Sevenless. The signal-to-background ratio up to 7.7 was achieved with an average assay coefficient of variation of 9.1%. The use of a low concentration of purified protein is desirable and the signal-to-background ratio of 3.4 was achieved in the assay at a concentration of 60 nM for H-Ras and SOS proteins. The need of only one labeled molecule and the ability to decrease the quantities of purified proteins used in the experiments are valuable qualities in HTS showing the potential of the QRET method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac202723h | DOI Listing |
Inorg Chem
January 2025
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.
View Article and Find Full Text PDFDrug Dev Res
February 2025
South University School of Pharmacy, Savannah, Giorgia, USA.
KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.
View Article and Find Full Text PDFCancer Med
January 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Background: Immune checkpoint inhibitors (ICIs) have achieved great success; however, a subset of patients exhibits no response. Consequently, there is a critical need for reliable predictive biomarkers. Our focus is on CDC42, which stimulates multiple signaling pathways promoting tumor growth.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!