The diagnosis of Q fever (Coxiella burnetii infection) relies primarily on the serological detection of specific antibodies. Recently, PCR-based methods have been introduced in diagnostic laboratories. Unfortunately, the fastest and most reliable 'real-time' detection method, which employs the 'online' detection of target nucleotide sequences while the amplification process is still in progress, requires expensive devices and consumables. In this study, we present a simple method that combines the simplicity of conventional PCR with new technical and methodical enhancements, resulting in a fast, specific and easy method for the molecular detection of C. burnetii. A collection of C. burnetii reference strains was tested with the modified conventional gel-based PCR approach applying a particluar PCR buffer (QIAGEN(®) Fast Cycling PCR kit) and using a closed ready-to-use gel-cassette-system (FlashGel(®)) for the visualization of specific PCR products. The modified conventional PCR method reached nearly the speed of the LightCycler(®) HybProbe real-time PCR assay (120 vs. 90 min) and showed equal sensitivity and specificity. The general cost per PCR run was 25% less than that for the LightCycler method. These improvements make this method suitable for small laboratories with limited resources and for deployable PCR diagnostics in field laboratories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-695X.2011.00900.x | DOI Listing |
J Trace Elem Med Biol
January 2025
Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.
Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.
Indian J Dent Res
October 2024
ImmuGenix Biosciences Pvt Ltd, Chennai, Tamil Nadu, India.
Background: Candidalysin has been isolated initially from a pathogenic human fungus. The extent of cell elongation 1 (ECE1) gene codes for candidalysin of Candida albicans (C. albicans).
View Article and Find Full Text PDFAm J Dermatopathol
December 2024
Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain.
Introduction: The current WHO classification of melanocytic tumors distinguishes 9 pathogenic routes. This classification is based on the conceptual interpretation that melanocytic tumors evolve from benign counterparts, accumulating mutations, eventually developing into melanomas with metastatic and potentially lethal capacity. In this article, we present a molecular study of 2 melanocytic tumors that suggest a "leap" from pathogenic routes IV to I.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.
Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!