AI Article Synopsis

  • FTIR microspectroscopy emerged in the mid-1990s and is still gaining recognition, especially in China.
  • It is a fast, non-destructive technique known for its microdomain capability, visualization, and high precision and sensitivity.
  • The study reviews its composition, working principles, applications in various fields like biomedicine and forensic science, and discusses challenges and future prospects.

Article Abstract

FTIR microspectroscopy technique was born in the mid-nineties. The research on this technique has just began abroad, and this technology has not yet been widely recognized in China. It is a rapid, nondestructive testing technology, has the advantages of microdomain, visualization, high precision and high sensitivity. In the present study, the composition, operational principle and working mode of FTIR microspectroscopy were summarized. The progress in application of FTIR microspectroscopy technique was investigated in some fields, including biomedicine, microbiology, forensic science, materials science, nutrition and feed science and agricultural products. The difficulty of FTIR microspectroscopy research and the prospects of this technique were also discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ftir microspectroscopy
16
microspectroscopy technique
8
[ftir microspectroscopy
4
microspectroscopy progress
4
progress application]
4
ftir
4
application] ftir
4
microspectroscopy
4
technique
4
technique born
4

Similar Publications

Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant and .

View Article and Find Full Text PDF

Synchrotron sourced Fourier transform infrared (SS FTIR) microspectroscopy was employed to investigate the biological effects on the neuron-like pheochromocytoma (PC 12) cells after exposure to synchrotron sourced terahertz (SS THz) radiation. Over 10 min of exposure, the PC 12 cells received a total energy of 600 J m, with a total incident power density of ∼1.0 W m (0.

View Article and Find Full Text PDF

X-ray radiation treatments are largely adopted in radiotherapy, and Fourier-transform infrared microspectroscopy (μ-FTIR) has already been demonstrated to be a useful instrument for monitoring radiotherapy effects. Previous works in this field have focused on studying the changes occurring in cells when they are fixed immediately after the irradiation or 24 and 48 h later. In the present paper, changes occurring in SH-SY5Y neuroblastoma cells in the first hours after the irradiation are examined to obtain information on the processes taking place in this not-yet-investigated time window by using μ-FTIR.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) and opisthorchiasis, caused by Opisthorchis viverrini (O. viverrini) infection, frequently co-exist in Northeast Thailand. However, the underlying pathophysiology remains unknown.

View Article and Find Full Text PDF

In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!