Thin film solar cell techniques can effectively reduce the costs for photovoltaic solar power. However, most of these techniques still have the disadvantage of a comparatively low efficiency. One way to realize a thin film solar cell concept with high efficiency potential is the crystalline silicon thin-film (cSiTF) concept. Following the high-temperature approach, this concept is based on a silicon epitaxy process. This paper reports the current status of the development of a high throughput epitaxy tool at Fraunhofer ISE and presents first results. Also presented is the development of a simulation tool which is a virtual image of the real setup in order to forecast save deposition conditions. The presented epitaxy tool is the ConCVD (Continuous Chemical Vapour Deposition), in which an improved reactor setup has been installed, based on the experience gained so far. To provide insight into upcoming further advances, the industrial scale epitaxy tool ProConCVD is presented as well.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.5041DOI Listing

Publication Analysis

Top Keywords

epitaxy tool
12
silicon epitaxy
8
chemical vapour
8
vapour deposition
8
thin film
8
film solar
8
solar cell
8
epitaxy
5
in-line silicon
4
epitaxy photovoltaics
4

Similar Publications

Atomic scale, scanning transmission electron microscopy (STEM) analysis of the moiré structures in twisted epitaxial gold nanodiscs encapsulated in twisted bilayer molybdenum disulfide is presented. High angle annular dark field STEM imaging reveals that the period of the moiré patterns between gold and molybdenum disulfide varies with different twist angles of the bilayer molybdenum disulfide, ranging from 1.80 nm (epitaxial alignment of gold) to 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the spectroscopy of shallow donors in a CdTe/(Cd, Mg)Te structure, which helps test theoretical semiconductor models.
  • Measurements were taken at low temperatures (4.2 K) and under strong magnetic fields, focusing on the photocurrent generated by far-infrared photons.
  • The observed spectra show unexpected behaviors that don’t match traditional theories, leading to a new model that combines electrostatic fluctuations and magnetic field effects on electron localization.
View Article and Find Full Text PDF

Tunable diode laser absorption spectroscopy (TDLAS) is used to measure the 6s S-5d6p D absorption line profile of a Ba atomic beam produced in a molecular beam epitaxy (MBE) reactor. Despite the noisy MBE environment, a signal-to-noise ratio up to 100 is obtained thanks to a thorough optimization of the measurement setup. A model that realistically describes this absorption profile is presented, taking into account the angular distribution of atomic concentration in the atomic beam as well as the reactor and setup geometry.

View Article and Find Full Text PDF

The structural studies of two-dimensional (2D) van der Waals heterostructures and understanding of their relationship with the orientation of crystalline substrates using transmission electron microscopy (TEM) presents a challenge in developing an easy-to-use plan-view specimen preparation technique. In this report, we introduce a simple approach for high-quality plan-view specimen preparation utilizing a dual beam system comprising focused ion beam and scanning electron microscopy. To protect the atomically thin 2D heterostructure during the preparation process, we employ an epoxy layer.

View Article and Find Full Text PDF

Extensive ab initio density functional theory molecular dynamics calculations were used to evaluate stability conditions for relevant phases of InN. In particular, the p-T conditions of the thermal decomposition of InN and pressure-induced wurtzite-rocksalt solid-solid phase transition were established. The comparison of the simulation results with the available experimental data allowed for a critical evaluation of the capabilities and limitations of the proposed simulation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!