Photocatalytic bactericidal mechanism of nanoscale TiO2 films on Escherichia coli.

J Nanosci Nanotechnol

State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Published: September 2011

Two kinds of nanoscale TiO2 films were prepared by magnetron sputtering and screen printing methods, respectively. Results show that both phase composition and specific surface area of the film affect the photocatalytic bactericidal efficiency. Time-series in situ atomic force microscopy (AFM) observation were further used to characterize the cellular responses of Escherichia coli (E. coli) in photocatalytic process. Some nanosized patches were found on the bacterial surface in the forepart of photocatalytic reaction. It suggested that the photocatalytic attack induced the self-protection of bacteria at first. Subsequently, some cracks on the surface and the enlargement of cell body indicated that the cell wall was damaged and lost its structure supporting function, and it eventually led to the death of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4757DOI Listing

Publication Analysis

Top Keywords

photocatalytic bactericidal
8
nanoscale tio2
8
tio2 films
8
escherichia coli
8
photocatalytic
5
bactericidal mechanism
4
mechanism nanoscale
4
films escherichia
4
coli kinds
4
kinds nanoscale
4

Similar Publications

Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy.

Dent Mater

January 2025

Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:

Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.

View Article and Find Full Text PDF

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Nickel MOF (Ni-MOF) nanoparticles were successfully anchored onto a polymeric graphitic carbon nitride (g-CN) and Chitosan nanostructure (NS) using an eco-friendly and straightforward synthesis method. These newly fabricated photocatalysts were thoroughly characterized with standard techniques, revealing that the nanoscale Ni-MOF particles were uniformly deposited on the sheet-like g-CN matrix. This configuration demonstrated excellent antimicrobial properties and outstanding photodegradation of tetracycline hydrochloride under visible light exposure.

View Article and Find Full Text PDF

In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO/g-CN nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO/g-CN exhibited superior electron-hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against , , and .

View Article and Find Full Text PDF

Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration.

Biomaterials

May 2025

Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea. Electronic address:

Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!