The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

PLoS One

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Xiangshan, Beijing, China.

Published: April 2012

Background: Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/principal Findings: A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/significance: Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214076PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027645PLOS

Publication Analysis

Top Keywords

soil cycling
16
warming addition
16
effects warming
12
temperate grassland
12
soil
10
warming
9
addition soil
8
cycling temperate
8
grassland northeastern
8
northeastern china
8

Similar Publications

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.

View Article and Find Full Text PDF

Nano-selenium fertilizers can promote plant growth and nitrogen availability. However, little information is available on the effects of nano-selenium on tea leaf quality, soil nutrient availability and associated microbe-driven mechanisms. This study examined the effects of nano-selenium on the tea leaf quality and soil nitrogen cycling in 20-year-old tea plantations when the leaves were sprayed with ammonium or nitrate.

View Article and Find Full Text PDF

Background: Incorporating organic manure improves soil properties and crop productivity. A long-term study started in October 1967 examined the effects of farmyard manure and nitrogen fertilization on the soil at key growth stages of pearl millet in a pearl millet-wheat cropping system over its 51st cycle.

Results: Applying 15 Mg of farmyard manure (FYM) per hectare in both growing seasons significantly boosted soil organic carbon (SOC), dissolved organic carbon (DOC), and key nutrients compared to one-season application.

View Article and Find Full Text PDF

Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!