A novel mycolic acid in a Mycobacterium sp. from the environment.

Eur J Biochem

Departamento de Microbiologia, Hospital de la Santa Cruz y San Pablo, Facultad de Medicina, Universidad Autónoma de Barcelona, Spain.

Published: September 1990

A fast-growing, non-photochromogenic mycobacterium isolated from the environment exhibited, on thin-layer chromatograms, a characteristic pattern of mycolates composed of unsaturated mycolates and also an unknown more polar component. Spectroscopic analysis and chemical degradation showed that this latter component was a novel mycolic acid containing a methoxy group at the omega-1 position (instead of omega-17 and omega-18 in known methoxymycolates), and two double bonds in the long mero aldehyde chain (instead of one as in known mycolates with additional oxygenated groups).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1990.tb19286.xDOI Listing

Publication Analysis

Top Keywords

novel mycolic
8
mycolic acid
8
acid mycobacterium
4
mycobacterium environment
4
environment fast-growing
4
fast-growing non-photochromogenic
4
non-photochromogenic mycobacterium
4
mycobacterium isolated
4
isolated environment
4
environment exhibited
4

Similar Publications

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.

View Article and Find Full Text PDF

Structure-based development of N-Arylindole derivatives as Pks13 inhibitors against Mycobacterium tuberculosis.

Eur J Med Chem

February 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:

Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.

View Article and Find Full Text PDF

Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis.

Trop Med Infect Dis

November 2024

Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa.

Article Synopsis
  • - Patient loss to follow-up due to expensive and centralized diagnostics for tuberculosis is a major challenge, stressing the need for a more accessible testing method.
  • - Current biomarkers, specifically antibodies against mycolic acids in mycobacterial cell walls, show potential but are hard to detect with typical rapid tests because they are of low affinity.
  • - Researchers have developed a new method for detecting mycolic acid antibodies using engineered monoclonal antibodies, leading to the creation of a novel lateral flow immunoassay called MALIA, which shows promise for practical tuberculosis testing.
View Article and Find Full Text PDF

Identification of BMVC-8C3O as a novel Pks13 inhibitor with anti-tuberculosis activity.

Tuberculosis (Edinb)

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili #1, Beijing, 100050, China. Electronic address:

Given the increasing prevalence of drug-resistant tuberculosis (TB), there is an urgent demand in developing novel anti-TB medications with highly effective, safe, and utilize innovative mechanisms of action. Blocking the mycolic acid synthesis pathway is well-established to be a significant strategy in developing anti-TB drugs, and Pks13 was identified as a crucial enzyme in this process. Importantly, the modes of action of recognized Pks13 inhibitors differ from traditional anti-TB medications, highlighting Pks13 as a potential and promising target in drug development within TB treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!