A fast-growing, non-photochromogenic mycobacterium isolated from the environment exhibited, on thin-layer chromatograms, a characteristic pattern of mycolates composed of unsaturated mycolates and also an unknown more polar component. Spectroscopic analysis and chemical degradation showed that this latter component was a novel mycolic acid containing a methoxy group at the omega-1 position (instead of omega-17 and omega-18 in known methoxymycolates), and two double bonds in the long mero aldehyde chain (instead of one as in known mycolates with additional oxygenated groups).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1990.tb19286.x | DOI Listing |
Arch Microbiol
January 2025
Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, J&K, 190005, India.
Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.
View Article and Find Full Text PDFEur J Med Chem
February 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:
Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.
View Article and Find Full Text PDFTrop Med Infect Dis
November 2024
Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa.
Tuberculosis (Edinb)
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili #1, Beijing, 100050, China. Electronic address:
Given the increasing prevalence of drug-resistant tuberculosis (TB), there is an urgent demand in developing novel anti-TB medications with highly effective, safe, and utilize innovative mechanisms of action. Blocking the mycolic acid synthesis pathway is well-established to be a significant strategy in developing anti-TB drugs, and Pks13 was identified as a crucial enzyme in this process. Importantly, the modes of action of recognized Pks13 inhibitors differ from traditional anti-TB medications, highlighting Pks13 as a potential and promising target in drug development within TB treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!