Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21.

Arterioscler Thromb Vasc Biol

Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany.

Published: February 2012

Objective: MicroRNAs are a class of small ribonucleotides regulating gene/protein targets by transcript degradation or translational inhibition. Transforming growth factor-β (TGF-β) is involved in cardiac fibrosis partly by stimulation of endothelial-to-mesenchymal transition (EndMT). Here, we investigated whether microRNA (miR)-21, a microRNA enriched in fibroblasts and involved in general fibrosis, has a role in cardiac EndMT.

Methods And Results: TGF-β treatment of endothelial cells significantly increased miR-21 expression and induced EndMT characterized by suppression of endothelial and increase of fibroblast markers. Overexpression of miR-21 alone also stimulated EndMT. Importantly, miR-21 blockade by transfection of specific microRNA inhibitors partly prevented TGF-β-induced EndMT. Mechanistically, miR-21 silenced phosphatase and tensin homolog in endothelial cells, resulting in activation of the Akt-pathway. Akt inhibition partly restored TGF-β-mediated loss of endothelial markers during EndMT. In vivo, pressure overload of the left ventricle led to increased expression of miR-21 in sorted cardiac endothelial cells, which displayed molecular and phenotypic signs of EndMT. This was attenuated by treatment of mice subjected to left ventricular pressure overload with an antagomir against miR-21.

Conclusions: TGF-β-mediated EndMT is regulated at least in part by miR-21 via the phosphatase and tensin homolog/Akt pathway. In vivo, antifibrotic effects of miR-21 antagonism are partly mediated by blocking EndMT under stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.111.234286DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
transforming growth
8
endothelial-to-mesenchymal transition
8
partly mediated
8
endmt
8
mir-21
8
phosphatase tensin
8
pressure overload
8
partly
5
endothelial
5

Similar Publications

Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.

View Article and Find Full Text PDF

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms.

J Cell Mol Med

January 2025

Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.

Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.

ACS Pharmacol Transl Sci

January 2025

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.

Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!