RNase mapping by nucleobase-specific endonucleases combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS) is a powerful analytical method for characterizing ribonucleic acids (RNAs). Endonuclease digestion of RNA yields products that contain a 3'-terminal phosphate group. MS/MS via collision-induced dissociation (CID) of these digestion products on a linear ion trap generates fragmentation pathways that include the loss of phosphoric acid (-H(3)PO(4); -98 u), which does not provide information about the sequence of the digestion products and can reduce ion abundance from other pathways that provide sequence information. Here we investigate the use of bacterial alkaline phosphatase (BAP) after RNase digestion to remove the 3'-terminal phosphate from all RNase digestion products prior to LC/MS/MS analysis. RNase digestion products lacking the 3'-phosphate were found to produce CID spectra with more consistent, high-abundance c- and y-type fragment ions as well as significantly more a-Base and w-type ions than digestion products retaining the 3'-phosphate. In this manner, RNase mapping with LC/MS/MS can provide more complete RNA sequence information from fragment ions of higher abundance that are easier to interpret and identify.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.5266 | DOI Listing |
JHEP Rep
February 2025
Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.
Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.
Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).
Front Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
Front Bioeng Biotechnol
January 2025
APESA Pôle valorisation, Montardon, France.
This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFiScience
January 2025
Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.
Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in , is involved in the uptake of iron-chelating mycobactin produced by spp. In this report, we present the data that indicates the -PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
This study focused on the effect of ultrasound-assisted immersion freezing (UIF) with different ultrasound power (200, 400, 600 W) on the physicochemical and digestive properties of beef myofibrillar proteins (BMP). The results showed that the solubility and thermal stability of BMP were significantly increased, when treated with 400 W ultrasound, and the α-helix, β-sheets, β-turns, and random-coil fractions structures content were higher and the fluorescence intensity was closest to that of the control group, demonstrating enhanced structural stability of BMP. The protein digestibility of the UIF-400 W group was significantly enhanced while the particle size of the digested product was reduced, which proved its enhanced digestion characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!