Detection of biological uranium reduction using magnetic resonance.

Biotechnol Bioeng

Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA.

Published: April 2012

AI Article Synopsis

Article Abstract

The conversion of soluble uranyl ions (UO₂²⁺) by bacterial reduction to sparingly soluble uraninite (UO₂(s)) is being studied as a way of immobilizing subsurface uranium contamination. Under anaerobic conditions, several known types of bacteria including iron and sulfate reducing bacteria have been shown to reduce U (VI) to U (IV). Experiments using a suspension of uraninite (UO₂(s)) particles produced by Shewanella putrefaciens CN32 bacteria show a dependence of both longitudinal (T₁) and transverse (T₂) magnetic resonance (MR) relaxation times on the oxidation state and solubility of the uranium. Gradient echo and spin echo MR images were compared to quantify the effect caused by the magnetic field fluctuations (T*₂) of the uraninite particles and soluble uranyl ions. Since the precipitate studied was suspended in liquid water, the effects of concentration and particle aggregation were explored. A suspension of uraninite particles was injected into a polysaccharide gel, which simulates the precipitation environment of uraninite in the extracellular biofilm matrix. A reduction in the T₂ of the gel surrounding the particles was observed. Tests done in situ using three bioreactors under different mixing conditions, continuously stirred, intermittently stirred, and not stirred, showed a quantifiable T₂ magnetic relaxation effect over the extent of the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24369DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
soluble uranyl
8
uranyl ions
8
uraninite uo₂s
8
suspension uraninite
8
t₂ magnetic
8
uraninite particles
8
uraninite
5
detection biological
4
biological uranium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!