Purpose: Real-time reverse-transcriptase PCR (RT-qPCR) or conventional RT-PCR (RT-cPCR) detection of tyrosine hydroxylase (TH) is increasingly used to detect neuroblastoma (NB) cells in clinical samples. However, TH expression in normal tissues can limit its usefulness and make additional diagnostic strategies necessary.

Methods: We analysed TH in 857 tumour, bone marrow aspirate and peripheral blood stem cell samples from 65 NB patients using RT-cPCR, and compared results from 666 samples analysed by RT-qPCR. TH was investigated in 84 samples from patients with other diagnoses and 354 samples from healthy donors as controls, and 132 samples from the entire collection were evaluated for NB cells using 5-colour flow cytometry (FC).

Results: Cohen's kappa coefficient demonstrated a substantial agreement between RT-cPCR and RT-qPCR as well as RT-cPCR and FC and a moderate agreement between RT-qPCR and FC. TH expression was also detected in samples from individual patients with Ewing sarcoma, nephroblastoma and rhabdomyosarcoma, but not from healthy donors. FC panels were an effective complementary strategy, detecting as few as 0.002% NB cells, characterised as CD45negCD9+CD81+CD56+ch14:18+GD2+ cells with occasional CD57+CD138+CD166+ expression.

Conclusion: TH RT-qPCR alone is limited for detection of NB cells because of "false positives" in samples from patients with other diseases. Advanced FC may serve as a complementary method to detect residual NB, but needs further confirmation in larger patient cohorts.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0031-1287842DOI Listing

Publication Analysis

Top Keywords

samples patients
12
neuroblastoma cells
8
cells clinical
8
flow cytometry
8
tyrosine hydroxylase
8
samples
8
healthy donors
8
cells
6
rt-qpcr
5
detection neuroblastoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!