Stabilized ribosome display for in vitro selection.

Methods Mol Biol

Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.

Published: March 2012

Ribosome display is a very effective and powerful technology for screening functional peptides or polypeptides in vitro. In ribosome display, each peptide or polypeptide (phenotype) links with its corresponding mRNA (genotype) through a ribosome. This link can be achieved by the absence of a stop codon in the mRNA, therefore stalling the ribosome at the end of translation with the nascent random sequence peptide extended by a spacer outside of the ribosome tunnel. In this chapter, we describe a method for the use of a further stabilized peptide-ribosome-mRNA complex for ribosome display.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-379-0_4DOI Listing

Publication Analysis

Top Keywords

ribosome display
16
ribosome
6
stabilized ribosome
4
display
4
display vitro
4
vitro selection
4
selection ribosome
4
display effective
4
effective powerful
4
powerful technology
4

Similar Publications

Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alpha.

Blood Adv

January 2025

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.

View Article and Find Full Text PDF

Natural products have long been a rich source of diverse and clinically effective drug candidates. Non-ribosomal peptides (NRPs), polyketides (PKs), and NRP-PK hybrids are three classes of natural products that display a broad range of bioactivities, including antibiotic, antifungal, anticancer, and immunosuppressant activities. However, discovering these compounds through traditional bioactivity-guided techniques is costly and time-consuming, often resulting in the rediscovery of known molecules.

View Article and Find Full Text PDF

First Detection and Genomic Characterization of Linezolid-Resistant Clinical Isolates in Bulgaria.

Microorganisms

January 2025

Department of Medical Microbiology "Corr. Mem. Prof. Ivan Mitov, MD, DMSc", Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria.

Linezolid is an oxazolidinone antibiotic and is considered a last-resort treatment option for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant enterococci. The present study aimed to explore the linezolid resistance mechanisms and genomic characteristics of two vancomycin-susceptible isolates from Bulgaria. The strains designated Efs2503-bg (inpatient from Pleven) and Efs966-bg (outpatient from Varna) were recovered from wounds in 2018 and 2023, respectively.

View Article and Find Full Text PDF

Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Redox Biol

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA. Electronic address:

Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!