The physiological role and possible functional substitution of each of the five alcohol dehydrogenase (Adh) isozymes in Saccharomyces cerevisiae were investigated in five quadruple deletion mutants designated strains Q1-Q5, with the number indicating the sole intact ADH gene. Their growth in aerobic batch cultures was characterised in terms of kinetic and stoichiometric parameters. Cultivation with glucose or ethanol as carbon substrate revealed that Adh1 was the only alcohol dehydrogenase capable of efficiently catalysing the reduction of acetaldehyde to ethanol. The oxidation of produced or added ethanol could also be attributed to Adh1. Growth of strains lacking the ADH1 gene resulted in the production of glycerol as a major fermentation product, concomitant with the production of a significant amount of acetaldehyde. Strains Q2 and Q3, expressing only ADH2 or ADH3, respectively, produced ethanol from glucose, albeit less than strain Q1, and were also able to oxidise added ethanol. Strains Q4 and Q5 grew poorly on glucose and produced ethanol, but were neither able to utilise the produced ethanol nor grow on added ethanol. Transcription profiles of the ADH4 and ADH5 genes suggested that participation of these gene products in ethanol production from glucose was unlikely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1567-1364.2011.00760.x | DOI Listing |
Prep Biochem Biotechnol
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India.
Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan. Electronic address:
In modern Japanese soy sauce production, sealed outdoor fermentation tanks are used to ferment moromi with halotolerant starter cultures: the lactic acid bacterium Tetragenococcus halophilus and yeasts Wickerhamiella versatilis and Zygosaccharomyces rouxii. T. halophilus and W.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Electronic address:
Zymomonas mobilis is an ethanologenic bacterium that has been used for over 1500 years to produce alcoholic beverages. Recently, this microbe has become a top candidate for biofuel production due to its efficient metabolism. Z.
View Article and Find Full Text PDFNanoscale
January 2025
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.
View Article and Find Full Text PDFSci Rep
January 2025
Capital Institute of Pediatrics, Beijing, China.
Aldehyde dehydrogenase 2 (Aldh2) Glu504Lys mutation, common in East Asians, is linked to various alcohol-related pathologies, notably fatty liver disease. Recent findings suggest that high ethanol-producing Klebsiella pneumoniae(HiAlc Kpn) exacerbates liver injury in non-alcoholic fatty liver disease (NAFLD). Our study investigated the combined effects of Aldh2 deficiency and HiAlc Kpn on NAFLD liver injury, transcriptome analyses to unearth potential mechanisms and therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!