Stability of microbial cultures during sampling and storage is a vital issue in various fields of medicine, biotechnology, food science, and forensics. We have developed a unique bacterial preservation process involving a non-toxic, water-soluble acacia gum polymer that eliminates the need for refrigerated storage of samples. The main goal of this study is to characterize the efficacy of acacia gum polymer for preservation of pathogenic bacteria (Bacillus anthracis and methicillin-resistant Staphylococcus aureus-MRSA) on different materials, used for swabbing and filtration: cotton, wool, polyester, rayon, charcoal cloth, and Whatman paper. Acacia gum polymer used for preservation of two pathogens has been shown to significantly protect bacteria during dehydration and storage in all tested samples at the range of temperatures (5-45°C for MRSA and 40-90°C for B. anthracis). Our results showed higher recovery as well as higher viability during the storage of both bacteria in all materials with acacia gum. Addition of acacia gum polymer to swabbing materials or filters will increase efficacy of sample collection and identification of pathogenic bacteria from locations such as hospitals or the environment. Proposed approach can also be used for long-term storage of culture collections, since acacia gum contributes to viability and stability of bacterial cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2011.11.002 | DOI Listing |
Int J Biol Macromol
January 2025
Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India.
Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
The objective of this study was to prepare a microcapsule system composed of the inner microenvironment (probiotics), middle oil layer (soybean oil and polyglycerol polyricinoleate) and outer coacervate (whey protein and gum arabic) using double emulsification technique coupled with complex coacervation to encapsulate probiotics, and to evaluate the effect of adding krill oil (KO) to the middle oil layer on microcapsule structure and probiotic stability. The results of Fourier transform infrared spectroscopy and Scanning electron microscopy confirmed that whey protein may capture phospholipids in KO through hydrogen bonds, resulting in the formation of a more compact coacervate. Due to the compact coacervate enhanced the vapor transport barrier and reduced water evaporation during low-temperature dehydration, probiotics encapsulated in KO-supplemented microcapsules revealed less cell damage and a higher survival rate after freeze-drying.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia. Electronic address:
Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!