Repetitive in vivo imaging in mice has become an indispensable tool for studying dynamic changes in structure and function of the brain. We describe a head fixation system, which allows rapid re-localization of previously imaged regions of interest (ROIs) within the brain. Such ROIs can be automatically relocated and imaged over weeks to months with negligible rotational change and only minor translational errors. Previously stored imaging positions can be fully automated re-localized within a few seconds. This automated rapid and accurate relocation simplifies image acquisition and post-processing in longitudinal imaging experiments. Moreover, as the laser is only used for data acquisition and not for finding previously imaged ROIs, the risk of laser induced tissue damage and photobleaching is greatly reduced. Thus, here described head fixation device appears well suited for in vivo repetitive long-term imaging in rodent brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2011.10.029 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFHealthc Technol Lett
December 2024
Robotics and Control Laboratory, Department of Electrical and Computer Engineering The University of British Columbia Vancouver Canada.
The Segment Anything model (SAM) is a powerful vision foundation model that is revolutionizing the traditional paradigm of segmentation. Despite this, a reliance on prompting each frame and large computational cost limit its usage in robotically assisted surgery. Applications, such as augmented reality guidance, require little user intervention along with efficient inference to be usable clinically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!