Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis.

Genes Cells

Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan.

Published: December 2011

In eukaryotes, the replicative DNA helicase 'core' is the minichromosome maintenance (Mcm) complex (MCM), forming a heterohexameric complex consisting of six subunits (Mcm2-7). Recent studies showed that the CMG (Cdc45-MCM-GINS) complex is the actual helicase body in the replication fork progression complex. In Archaea, Thermococcus kodakarensis harbors three genes encoding the Mcm homologs on its genome, contrary to most archaea, which have only one homolog. It is thus, of high interest, whether and how these three Mcms share their functions in DNA metabolism in this hyperthermophile. Here, we report the biochemical properties of two of these proteins, TkoMcm1 and TkoMcm3. In addition, their physical and functional interactions with GINS, possibly an essential factor for the initiation and elongation process of DNA replication, are presented through in vitro ATPase and helicase assays, and an in vivo immunoprecipitation assay. Gene disruption and product quantification analyses suggested that TkoMcm3 is essential for cell growth and plays a key role as the main DNA helicase in DNA replication, whereas TkoMcm1 also shares some function in the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2011.01562.xDOI Listing

Publication Analysis

Top Keywords

thermococcus kodakarensis
8
dna helicase
8
dna replication
8
dna
5
biochemical genetical
4
genetical analyses
4
analyses three
4
mcm
4
three mcm
4
mcm genes
4

Similar Publications

Phosphopentomutases catalyze the isomerization of ribose 1-phosphate and ribose 5-phosphate. , a hyperthermophilic archaeon, harbors a novel enzyme (PPM) that exhibits high homology with phosphohexomutases but has no significant phosphohexomutase activity. Instead, PPM catalyzes the interconversion of ribose 1-phosphate and ribose 5-phosphate.

View Article and Find Full Text PDF

The cryo-electron microscopy (cryoEM) method has enabled high-resolution structure determination of numerous biomolecules and complexes. Nevertheless, cryoEM sample preparation of challenging proteins and complexes, especially those with low abundance or with preferential orientation, remains a major hurdle. We developed an affinity-grid method employing monodispersed single particle streptavidin on a lipid monolayer to enhance particle absorption on the grid surface and alleviate sample exposure to the air-water interface.

View Article and Find Full Text PDF

l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods.

View Article and Find Full Text PDF

Structural basis of archaeal FttA-dependent transcription termination.

Nature

November 2024

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.

The ribonuclease FttA (also known as aCPSF and aCPSF1) mediates factor-dependent transcription termination in archaea. Here we report the structure of a Thermococcus kodakarensis transcription pre-termination complex comprising FttA, Spt4, Spt5 and a transcription elongation complex (TEC). The structure shows that FttA interacts with the TEC in a manner that enables RNA to proceed directly from the TEC RNA-exit channel to the FttA catalytic centre and that enables endonucleolytic cleavage of RNA by FttA, followed by 5'→3' exonucleolytic cleavage of RNA by FttA and concomitant 5'→3' translocation of FttA on RNA, to apply mechanical force to the TEC and trigger termination.

View Article and Find Full Text PDF

Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!