Background: Fractalkine/CX3CL1 and its cognate receptor CX3CR1 are abundantly expressed in the CNS. Fractalkine is an unusual C-X3-C motif chemokine that is important in neuron-microglial communication, a co-receptor for HIV infection, and can be neuroprotective. To assess the effects of fractalkine on opiate-HIV interactive neurotoxicity, wild-type murine striatal neurons were co-cultured with mixed glia from the striata of wild-type or Cx3cr1 knockout mice ± HIV-1 Tat and/or morphine. Time-lapse digital images were continuously recorded at 20 min intervals for up to 72 h using computer-aided microscopy to track the same cells repeatedly.

Results: Co-exposure to Tat and morphine caused synergistic increases in neuron death, dendritic pruning, and microglial motility as previously reported. Exogenous fractalkine prevented synergistic Tat and morphine-induced dendritic losses and neuron death even though the inflammatory mediator TNF-α remained significantly elevated. Antibody blockade of CX3CR1 mimicked the toxic effects of morphine plus Tat, but did not add to their toxicity; while fractalkine failed to protect wild-type neurons co-cultured with Cx3cr1-/--null glia against morphine and Tat toxicity. Exogenous fractalkine also normalized microglial motility, which is elevated by Tat and morphine co-exposure, presumably limiting microglial surveillance that may lead to toxic effects on neurons. Fractalkine immunofluorescence was expressed in neurons and to a lesser extent by other cell types, whereas CX3CR1 immunoreactivity or GFP fluorescence in cells cultured from the striatum of Cx3cr1-/- (Cx3cr1GFP/GFP) mice were associated with microglia. Immunoblotting shows that fractalkine levels were unchanged following Tat and/or morphine exposure and there was no increase in released fractalkine as determined by ELISA. By contrast, CX3CR1 protein levels were markedly downregulated.

Conclusions: The results suggest that deficits in fractalkine-CX3CR1 signaling contribute to the synergistic neurotoxic effects of opioids and Tat. Importantly, exogenous fractalkine can selectively protect neurons from the injurious effects of chronic opioid-HIV-1 Tat co-exposure, and this suggests a potential therapeutic course for neuroAIDS. Although the cellular mechanisms underlying neuroprotection are not certain, findings that exogenous fractalkine reduces microglial motility and fails to protect neurons co-cultured with Cx3cr1-/- mixed glia suggest that fractalkine may act by interfering with toxic microglial-neuron interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287119PMC
http://dx.doi.org/10.1186/1750-1326-6-78DOI Listing

Publication Analysis

Top Keywords

exogenous fractalkine
16
neurons co-cultured
12
microglial motility
12
fractalkine
11
tat
9
striatal neurons
8
dendritic losses
8
mixed glia
8
tat and/or
8
and/or morphine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!