Understanding the ecology of methanogens in natural and engineered environments is a prerequisite to predicting or managing methane emissions. In this study, a novel high-throughput fingerprint method was developed for determining methanogen diversity and relative abundance within environmental samples. The method described here, designated amplicon length heterogeneity PCR of the mcrA gene (LH-mcrA), is based on the natural length variation in the mcrA gene. The mcrA gene encodes the alpha-subunit of the methyl-coenzyme M reductase, which is involved in the terminal step of methane production by methanogens. The methanogenic communities from stored swine and dairy manures were distinct from each other. To validate the method, methanogenic communities in a plug flow-type bioreactor (PFBR) treating swine manure were characterized using LH-mcrA method and correlated to mcrA gene clone libraries. The diversity and relative abundance of the methanogenic groups were assessed. Methanobrevibacter, Methanosarcinaceae, Methanoculleus, Methanogenium, Methanocorpusculum and one unidentified group were assigned to particular LH-mcrA amplicons. Particular phylotypes related to Methanoculleus were predominant in the last compartment of the PFBR where the bulk of methane was produced. LH-mcrA method was found to be a reliable, fast and cost-effective alternative for diversity assessment of methanogenic communities in microbial systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2011.02418.x | DOI Listing |
Microorganisms
December 2024
Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
Poyang Lake is the largest freshwater lake in China, which boasts unique hydrological conditions and rich biodiversity. In this study, metagenomics technology was used to sequence the microbial genome of soil samples S1 (sedimentary), S2 (semi-submerged), and S3 (arid) with different water content from the Poyang Lake wetland; the results indicate that the three samples have different physicochemical characteristics and their microbial community structure and functional gene distribution are also different, resulting in separate ecological functions. The abundance of typical ANME archaea and the high abundance of in S1 mutually demonstrate prominent roles in the methane anaerobic oxidation pathway during the methane cycle.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.
View Article and Find Full Text PDFiScience
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
Methane (CH), one of the major greenhouse gases, plays a pivotal role in global climate change. Elevated CO concentration (eCO) increases soil carbon storage, which may provide a valuable material base for soil methanogenic microorganisms and stimulating their growth, thereby ultimately affecting CH emissions. Therefore, to comprehend the effect of eCO on CH emissions, we conducted a meta-analysis encompassing 398 datasets from 59 publications (total of 50 sample sites).
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Life Sciences, Texas A&M University-Corpus Christi, TX, 78412, USA. Electronic address:
Biochar has been proposed as an effective material for mitigating greenhouse gas emissions from farmlands, but comparable information for earthen aquaculture ponds is limited. A field study was conducted to investigate the effects of adding biochar (200-1600 kg ha) derived from the invasive plant Spartina alterniflora on sediment physico-chemical properties, CH production potential (P), and the relevant functional gene abundances in earthen aquaculture ponds during the non-farming period. The results indicated that biochar treatments increased sediment porosity and salinity, while decreasing dissolved organic carbon and microbial biomass carbon.
View Article and Find Full Text PDFMicrobiome
December 2024
State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Background: Planetary plastic pollution poses a major threat to ecosystems and human health in the Anthropocene, yet its impact on biogeochemical cycling remains poorly understood. Waterlogged rice paddies are globally important sources of CH. Given the widespread use of plastic mulching in soils, it is urgent to unravel whether low-density polyethylene (LDPE) will affect the methanogenic community in flooded paddy soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!