Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phagocytosis and intracellular processing of mycobacteria by macrophages are complex cellular processes that require spatial and temporal coordination of particle uptake, organelle movement, activation of signaling pathways, and channel-mediated ionic flux. Recent work demonstrated that human macrophage NaV1.5, an intracellular voltage-gated sodium channel expressed on late endosomes, enhances endosomal acidification and phagocytosis. Here, using bacillus Camille-Guerin (BCG) as a model of mycobacterial infection, we examined how this channel regulates phagocytosis and phagosome maturation in human macrophages. Knockdown of NaV1.5 reduced high capacity uptake of labeled BCG. BCG-containing, NaV1.5-expressing cells demonstrated localization of NaV1.5 and Rab-7 positive endosomes and mitochondria to periphagosome regions that was not observed in NaV1.5-deficient cells. Knockdown of the channel reduced the initial calcium response following bacterial challenge and prevented the generation of prolonged and localized calcium oscillations during phagosome maturation. Inhibition of the mitochondrial Na(+) /Ca(2+) exchanger also prevented prolonged calcium oscillations during phagosome maturation. These results suggest that NaV1.5 and mitochondrial-dependent calcium signaling regulate mycobacteria phagocytosis and phagosome maturation in human macrophages through spatial-temporal coordination of calcium signaling within a unique subcellular region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-695X.2011.00853.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!