A mine dump aquifer in the Lusatian lignite mining district, Germany, is contaminated with acid mine drainage (AMD). The only natural process that can counteract the effects of the contamination is bacterial sulphate reduction. The technical measures chosen to handle the contamination include the injection of glycerol into the aquifer to supply electron donors and to accelerate the growth and activity of sulphate-reducing bacteria. An initial assessment of the hydrochemical conditions in the aquifer showed that sulphate concentrations are subject to alteration due to flow-related processes. Consequently, the decision whether sulphate reduction is occurring in the investigated aquifer section was based on the stable isotopic composition of dissolved sulphate and sulphide, which were used in combination with sulphate concentrations. The significant enrichment of both heavy sulphur and heavy oxygen in the remaining sulphate pool and a characteristic isotope fractionation pattern are a clear evidence for the activity of sulphate-reducing bacteria utilising the injected glycerol as an electron donor. This activity seemed to intensify over the observation period. The spatial distribution of sulphate reduction activity, however, appeared to be highly inhomogeneous. Rather than occurring ubiquitously, sulphate reduction activity seemed to concentrate in a defined reaction zone. Regardless of the inhomogeneous distribution, the overall turnover of sulphate during the period of investigation proves the applicability of this enhanced natural attenuation method to handle the restoration of aquifers contaminated with AMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2011.622443 | DOI Listing |
J Assist Reprod Genet
January 2025
Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy.
Purpose: This study aimed to evaluate the effectiveness of single versus group culture strategies for cumulus-oocyte complexes (COCs) derived from early antral follicles (EAFs), with the goal of optimizing culture conditions to increase oocyte availability for assisted reproductive technologies.
Methods: COCs isolated from EAFs (350-450 µm) from sheep ovaries were cultured in TCM199 medium supplemented with 0.15 µg/mL Zn as zinc sulfate, 10 IU/mL FSH, 10 ng/mL estradiol, 50 ng/mL testosterone, 50 ng/mL progesterone, and 5 µM Cilostamide.
Food Sci Technol Int
January 2025
College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
The objective of this study was to investigate the water-holding capacity (WHC) and quality changes of beef during heating at specific temperatures (including 40 °C, 60 °C, 80 °C, and 100 °C), as well as the degradation of proteins and the distribution of water within the muscle at different heating temperatures. The experiment utilized the sirloin section from eight crossbred cattle of and breeds, with four sampling sessions, two cattle per session. Each cattle were divided into 30 beef sirloin samples, each weighing 150 ± 10 g, and each session was completed within 3 days with the following tests.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.
Cu electrodeposition and the electrocatalysis of hydrogenation reactions thereupon involve significant interactions with adsorbed hydrogen. Electrochemical mass spectrometry (EC-MS) is used to explore the formation and decomposition of surface hydride on Cu(111) in 0.1 mol L HClO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!