Zinc oxide is considered as a very promising material for optoelectronics. However, to date, the difficulty in producing stable p-type ZnO is a bottleneck, which hinders the advent of ZnO-based devices. In that context, nitrogen-doped zinc oxide receives much attention. However, numerous reviews report the controversial character of p-type conductivity in N-doped ZnO, and recent theoretical contributions explain that N-doping alone cannot lead to p-typeness in Zn-rich ZnO. We report here that the ammonolysis at low temperature of ZnO(2) yields pure wurtzite-type N-doped ZnO nanoparticles with an extraordinarily large amount of Zn vacancies (up to 20%). Electrochemical and transient spectroscopy studies demonstrate that these Zn-poor nanoparticles exhibit a p-type conductivity that is stable over more than 2 years under ambient conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja208044k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!