The use of the [ReCl(4)(bpym)] precursor as a ligand toward the fully solvated nickel(II) metal ion affords the first example of a 2,2'-bipyrimidine-bridged Re(IV)-Ni(II) complex, [ReCl(4)(μ-bpym)NiBr(2)(H(2)O)(2)] (1), whose intramolecular ferromagnetic coupling has been substantiated from both experimental and theoretical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic202088s | DOI Listing |
Inorg Chem
December 2024
Materials, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
To synthetically target a specific material with select performance, the underlying relationship between structure and function must be understood. For targeting magnetic properties, such understanding is underdeveloped for a relatively new class of layered hexagonal perovskites, the 12R-BaMnO family. Here, we perform a detailed magnetostructural study of the layered hexagonal perovskite materials 12R-BaMnO, where = diamagnetic Ce or paramagnetic ≈ 1/2 Pr.
View Article and Find Full Text PDFChemistry
January 2025
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
We have prepared and structurally characterized pivalate based {Cr Ln } complexes with Ln = Dy and Gd as well as the Y analogue, with the overall formula [Cr Ln (mdea)(piv)(OH)], Ln = Gd, Dy and Y. We are reporting a detailed experimental magnetic properties study, including magnetization relaxation dynamics and calorimetric data, supported with quantum chemical calculations. The synthesis of the Y derivative, allowed to precisely identify the Cr(III)-Cr(III) exchange interaction magnitude which proved moderately strong and in agreement with known magneto-structural correlations.
View Article and Find Full Text PDFDalton Trans
December 2024
Xi'an Rare Metal Materials Institute Co., Ltd, Xi'an 710016, P. R. China.
Spin-crossover (SCO) at room temperature is a pivotal goal within the field of molecular magnetism. Herein, we attempt to assemble Fe SCO complexes using a substituted Hqsal ligand, HL (-(8-quinolyl)-2,3-dihydroxybenzaldimine). Two complexes [Fe(HL)]·X·2MeCN (X = BF for 1 and X = ClO for 2) were obtained and characterized.
View Article and Find Full Text PDFChemistry
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, Mumbai, 400076, India.
Dalton Trans
September 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature () is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(,)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-,',O3,O3'} (HL) to coordinate with the Fe ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!