Inositol-3-phosphate synthase (INO1) has previously been genetically validated as a drug target against Trypanosoma brucei, the causative agent of African sleeping sickness. Chemical intervention of this essential enzyme could lead to new therapeutic agents. Unfortunately, no potent inhibitors of INO1 from any organism have been reported, so a screen for potential novel inhibitors of T. brucei INO1was undertaken. Detection of inhibition of T. brucei INO1 is problematic due to the nature of the reaction. Direct detection requires differentiation between glucose-6-phosphate and inositol-3-phosphate. Coupled enzyme assays could give false positives as potentially they could inhibit the coupling enzyme. Thus, an alternative approach of differential scanning fluorimetry to identify compounds that interact with T. brucei INO1 was employed to screen ~670 compounds from the MayBridge Rule of 3 Fragment Library. This approach identified 38 compounds, which significantly altered the T(m) of TbINO1. Four compounds showed trypanocidal activity with ED50s in the tens of micromolar range, with 2 having a selectivity index in excess of 250. The trypanocidal and general cytotoxicity activities of all of the compounds in the library are also reported, with the best having ED50S of ~20 μM against T. brucei.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199943PMC
http://dx.doi.org/10.4061/2011/389364DOI Listing

Publication Analysis

Top Keywords

maybridge rule
8
rule fragment
8
fragment library
8
compounds interact
8
trypanosoma brucei
8
trypanocidal activity
8
brucei ino1
8
compounds
6
brucei
6
screening maybridge
4

Similar Publications

Molecular Docking, Pharmacophore Modeling, and ADMET Prediction of Novel Heterocyclic Leads as Glucokinase Activators.

Antiinflamm Antiallergy Agents Med Chem

September 2024

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India.

Background: A pivotal impetus has driven the development of numerous small molecules aiming to improve therapeutic strategies for type 2 diabetes. Glucokinase (GK) activation has been offered a new realm of therapeutic antidiabetic activity with novel heter-ocyclic derivatives. In the context of antidiabetic drug design, GK is an interesting and newly validated target.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is a key enzyme involved in overexpression in several human cancerous diseases including breast cancer. By performing efficient virtual screening in a series of active molecules or compounds from the Maybridge, NCI (National Cancer Institute), and Enamine databases, potential identification of COX-2 inhibitors could lead to new prognostic strategies in the treatment of breast cancer. Based on a 50% structural similitude, compounds were chosen as the inductive model of COX-2 inhibitions from these databases.

View Article and Find Full Text PDF

Aldo-keto reductase 1C1 (AKR1C1) is a hydroxysteroid dehydrogenase, known to inactivate the biologically active progesterone into its corresponding 20 α-hydroxyprogesterone. Increased expression of the AKR1C1 gene in oncogenesis is linked with resistance to various anticancer agents and hence it is considered as an emerging drug target for the design and developing the novel anticancer drugs. We have performed QSAR pharmacophore modeling for AKR1C1 inhibitors followed by a virtual screening of ~ 59,000 compounds present at the Maybridge database.

View Article and Find Full Text PDF

In Silico Study Probes Potential Inhibitors of Human Dihydrofolate Reductase for Cancer Therapeutics.

J Clin Med

February 2019

Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.

Dihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors.

View Article and Find Full Text PDF

Exploration for novel inhibitors showing back-to-front approach against VEGFR-2 kinase domain (4AG8) employing molecular docking mechanism and molecular dynamics simulations.

BMC Cancer

March 2018

Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.

Background: Angiogenesis is a process of formation of new blood vessels and is an important criteria demonstrated by cancer cells. Over a period of time, these cancer cells infect the other parts of the healthy body by a process called progression. The objective of the present article is to identify a drug molecule that inhibits angiogenesis and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!