Inositol-3-phosphate synthase (INO1) has previously been genetically validated as a drug target against Trypanosoma brucei, the causative agent of African sleeping sickness. Chemical intervention of this essential enzyme could lead to new therapeutic agents. Unfortunately, no potent inhibitors of INO1 from any organism have been reported, so a screen for potential novel inhibitors of T. brucei INO1was undertaken. Detection of inhibition of T. brucei INO1 is problematic due to the nature of the reaction. Direct detection requires differentiation between glucose-6-phosphate and inositol-3-phosphate. Coupled enzyme assays could give false positives as potentially they could inhibit the coupling enzyme. Thus, an alternative approach of differential scanning fluorimetry to identify compounds that interact with T. brucei INO1 was employed to screen ~670 compounds from the MayBridge Rule of 3 Fragment Library. This approach identified 38 compounds, which significantly altered the T(m) of TbINO1. Four compounds showed trypanocidal activity with ED50s in the tens of micromolar range, with 2 having a selectivity index in excess of 250. The trypanocidal and general cytotoxicity activities of all of the compounds in the library are also reported, with the best having ED50S of ~20 μM against T. brucei.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199943 | PMC |
http://dx.doi.org/10.4061/2011/389364 | DOI Listing |
Antiinflamm Antiallergy Agents Med Chem
September 2024
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India.
Background: A pivotal impetus has driven the development of numerous small molecules aiming to improve therapeutic strategies for type 2 diabetes. Glucokinase (GK) activation has been offered a new realm of therapeutic antidiabetic activity with novel heter-ocyclic derivatives. In the context of antidiabetic drug design, GK is an interesting and newly validated target.
View Article and Find Full Text PDFBiomed Res Int
July 2022
School of Medicine, College of Medicine and Health Science, Jigjiga University, Jigjiga, Ethiopia.
Cyclooxygenase-2 (COX-2) is a key enzyme involved in overexpression in several human cancerous diseases including breast cancer. By performing efficient virtual screening in a series of active molecules or compounds from the Maybridge, NCI (National Cancer Institute), and Enamine databases, potential identification of COX-2 inhibitors could lead to new prognostic strategies in the treatment of breast cancer. Based on a 50% structural similitude, compounds were chosen as the inductive model of COX-2 inhibitions from these databases.
View Article and Find Full Text PDFMol Cell Biochem
August 2021
Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, 110019, India.
Aldo-keto reductase 1C1 (AKR1C1) is a hydroxysteroid dehydrogenase, known to inactivate the biologically active progesterone into its corresponding 20 α-hydroxyprogesterone. Increased expression of the AKR1C1 gene in oncogenesis is linked with resistance to various anticancer agents and hence it is considered as an emerging drug target for the design and developing the novel anticancer drugs. We have performed QSAR pharmacophore modeling for AKR1C1 inhibitors followed by a virtual screening of ~ 59,000 compounds present at the Maybridge database.
View Article and Find Full Text PDFJ Clin Med
February 2019
Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
Dihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors.
View Article and Find Full Text PDFBMC Cancer
March 2018
Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
Background: Angiogenesis is a process of formation of new blood vessels and is an important criteria demonstrated by cancer cells. Over a period of time, these cancer cells infect the other parts of the healthy body by a process called progression. The objective of the present article is to identify a drug molecule that inhibits angiogenesis and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!