This study describes the effects of Bothrops marajoensis venom (Marajó lancehead) on isolated neuromuscular preparations of chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND). At low concentrations (1µg/ml for CBC and 5µg/ml for PND), the venom exhibited a neuromuscular blocking without any damaging effect on the muscle integrity. At higher concentration (20μg/ml for PND), together with the neuromuscular blockade, there was a moderate myonecrosis. The results show differences between mammalian and avian preparations in response to venom concentration; the avian preparation was more sensitive to venom neurotoxic effect than the mammalian preparation. The possible presynaptic mechanism underlying the neuromuscular blocking effect was reinforced by the observed increase in MEPPs at the same time (at 15min) when the facilitation of twitch tension occurred. These results indicate that the B. marajoensis venom produced neuromuscular blockade, which appeared to be presynaptic at low concentrations with a postsynaptic component at high concentrations, leading to muscle oedema. These observations demand the fractionation of the crude venom and characterization of its active components for a better understanding of its biological dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211074 | PMC |
Vet Parasitol Reg Stud Reports
August 2024
Laboratório de Patologia Animal, Instituto da Saúde e Produção Animal (ISPA), Universidade Federal Rural da Amazônia (UFRA). Caixa postal, 917, CEP 66.077-530 Belém, Pará, Brazil.
Snakes of the genus Bothrops inhabit tropical forests in Central and South America and are important for the biomedical and pharmaceutical industries because of the chemical properties of their venom. They serve as either definitive or intermediate hosts for many parasitic helminths. The Marajó Island (Brazil) is the natural habitat of venomous snakes, Bothrops atrox and Bothrops marajoensis, which are often found around rural and peri-urban areas and are known to bite humans.
View Article and Find Full Text PDFToxicon
July 2022
Universidade Estadual do Maranhão, Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Caxias, MA, 65604-380, Brazil; University of Gothenburg, Gothenburg Global Biodiversity Center and Department of Biological and Environmental Sciences, Box 461, SE-405-30, Göteborg, Sweden. Electronic address:
Knowing the distribution of venomous snakes of medical importance is essential to identify areas at risk for snakebites. Thus, we used an integrative approach based on the application of geographic distribution data of venomous snakes, species distribution modeling (SDM), spatial organization of snakebites, and information on human population density for mapping the potential distribution of snakes and identifying areas at risk of snakebites in the state of Maranhão (mid-northern Brazil). From a compiled database of venomous snake records deposited in biological collections and the literature, we predict the potential distribution of venomous snakes in Maranhão, a state whose diversity and geographic distribution of venomous snake species are poorly known.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil. Electronic address:
Snake venoms contain various proteins, especially phospholipases A (PLAs), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B.
View Article and Find Full Text PDFBiochem Res Int
September 2016
Multidisciplinary Research Laboratory, São Francisco University (USF), Avenida São Francisco de Assis 218, Jardim São José, 12916-350 Bragança Paulista, SP, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-365 Campinas, SP, Brazil.
Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
December 2015
University Hospital João de Barros Barreto, Federal University of Pará (UFPA), Rua dos Mundurucus 4487, Guamá, 66073.000, Belém, PA Brasil.
According to the World Health Organization, snakebites are considered neglected diseases. Bothrops, the genus most frequently implicated in envenomations in Brazil, includes the species B. marajoensis Hoge, 1966, part of the complex B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!