In the title compound, C(21)H(21)N(3)OS·C(3)H(7)NO, the carbonitrile mol-ecule is built up of two fused six-membered rings and one six-membered ring linked through a spiro C atom. The 1,3-diaza ring adopts an envelope conformation and the cyclo-hexane ring adopts a chair conformation. The dihedral angle between the aromatic rings is 46.7 (3)°. In the crystal, the components are linked by N-H⋯O hydrogen bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213469PMC
http://dx.doi.org/10.1107/S1600536811026948DOI Listing

Publication Analysis

Top Keywords

ring adopts
8
dimethyl-formamide monosolvate
4
monosolvate title
4
title compound
4
compound c21h21n3os·c3h7no
4
c21h21n3os·c3h7no carbonitrile
4
carbonitrile mol-ecule
4
mol-ecule built
4
built fused
4
fused six-membered
4

Similar Publications

The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(HO), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(HO) analog, C3MA, is indistinguishable from C3b.

View Article and Find Full Text PDF

Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.

View Article and Find Full Text PDF

Unprecedented short-circuit current density and efficiency of vacuum-deposited organic solar cells based on 8H-thieno[2',3':4,5]thieno[3,2-b] thieno[2,3-d]pyrrole.

Sci Bull (Beijing)

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.

Despite the many advantages for industrial mass production, vacuum-deposited organic solar cells (OSCs) suffer from low efficiency, primarily due to the limited molecular library of small-molecule donor and acceptor materials, which remains a significant challenge. Herein, two donor-acceptor-acceptor (D-A-A)-configured small-molecule donors, named TTBTDC and TTBTDC-F were synthesized, using 8H-thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]pyrrole (TTP) as a new fused-ring donor unit. Benefiting from the strong electron-donating ability of the TTP moiety and the adoption of the D-A-A molecular configuration, these molecules exhibited strong visible and near-infrared absorption as well as deep-lying highest occupied molecular orbital (HOMO) energy levels.

View Article and Find Full Text PDF

In this work, a five-mode erbium-doped waveguide amplifier with low differential modal gain (DMG) is first proposed. A novel, to the best of our knowledge, gain equalization scheme for synergistic reconfiguration of refractive index and concentration doping is adopted to equalize the modal gains based on the dual-layer ring core structure. NaYF:5%Gd,20%Yb,2%Er@NaYF nanoparticles are synthesized by annealing treatment to improve the emission spectral properties and the concentration doped in a host core material.

View Article and Find Full Text PDF

As an effective method to enhance the dielectric performance of polyolefin materials, polar side group modification has been extensively applied in the insulation and energy storage materials of electrical and electronic systems. In this work, two side groups with different topological structures were adopted, namely, vinyl acetate (VAc, aliphatic chain) and -vinyl-pyrrolidone (NVP, saturated ring), to modify polypropylene (PP) chemical grafting, and the effects of structural topology of the polar side group on the microscopic and macroscopic characteristics of PP, particularly on its electrical anti-breakdown ability, were investigated. Experimental results showed that the side group structural topology directly affected the crystallization and thermal properties of PP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!