In addition to axons and surrounding glial cells, the corpus callosum also contains interstitial neurons that constitute a heterogeneous cell population. There is growing anatomical evidence that white matter interstitial cells (WMICs) comprise GABAergic interneurons, but so far there is little functional evidence regarding their connectivity. The scarcity of these cells has hampered electrophysiological studies. We overcame this hindrance by taking recourse to transgenic mice in which distinct WMICs expressed enhanced green fluorescence protein (EGFP). The neuronal phenotype of the EGFP-labeled WMICs was confirmed by their NeuN positivity. The GABAergic phenotype could be established based on vasoactive intestinal peptide and calretinin expression and was further supported by a firing pattern typical for interneurons. Axons and dendrites of many EGFP-labeled WMICs extended to the cortex, hippocampus, and striatum. Patch-clamp recordings in acute slices showed that they receive excitatory and inhibitory input from cortical and subcortical structures. Moreover, paired recordings revealed that EGFP-labeled WMICs inhibit principal cells of the adjacent cortex, thus providing unequivocal functional evidence for their GABAergic phenotype and demonstrating that they are functionally integrated into neuronal networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633313PMC
http://dx.doi.org/10.1523/JNEUROSCI.0310-11.2011DOI Listing

Publication Analysis

Top Keywords

egfp-labeled wmics
12
white matter
8
matter interstitial
8
gabaergic interneurons
8
functionally integrated
8
cortical subcortical
8
functional evidence
8
gabaergic phenotype
8
wmics
5
5-ht3a receptor-bearing
4

Similar Publications

In addition to axons and surrounding glial cells, the corpus callosum also contains interstitial neurons that constitute a heterogeneous cell population. There is growing anatomical evidence that white matter interstitial cells (WMICs) comprise GABAergic interneurons, but so far there is little functional evidence regarding their connectivity. The scarcity of these cells has hampered electrophysiological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!