A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. | LitMetric

Gelatinous fibres are specialized fibres, distinguished by the presence of an inner, gelatinous cell-wall layer. In recent years, they have attracted increasing interest since their walls have a desirable chemical composition (low lignin, low pentosan, and high cellulose contents) for applications such as saccharification and biofuel production, and they have interesting mechanical properties, being capable of generating high tensional stress. However, the unique character of gelatinous layer has not yet been widely recognized. The first part of this review presents a model of gelatinous-fibre organization and stresses the unique character of the gelatinous layer as a separate type of cell-wall layer, different from either primary or secondary wall layers. The second part discusses major current models of tensional stress generation by these fibres and presents a novel unifying model based on recent advances in knowledge of gelatinous wall structure. Understanding this mechanism could potentially lead to novel biomimetic developments in material sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/err339DOI Listing

Publication Analysis

Top Keywords

tensional stress
12
stress generation
8
gelatinous fibres
8
cell-wall layer
8
unique character
8
character gelatinous
8
gelatinous layer
8
gelatinous
6
generation gelatinous
4
fibres
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!