The current study purpose examined the vertical height-anthropometry relationship with jump data obtained from an instrumented platform. Our methods required college-aged (n = 177) subjects to make 3 visits to our laboratory to measure the following anthropometric variables: height, body mass, upper arm length (UAL), lower arm length, upper leg length, and lower leg length. Per jump, maximum height was measured in 3 ways: from the subjects' takeoff, hang times, and as they landed on the platform. Standard multivariate regression assessed how well anthropometry predicted the criterion variance per gender (men, women, pooled) and jump height method (takeoff, hang time, landing) combination. Z-scores indicated that small amounts of the total data were outliers. The results showed that the majority of outliers were from jump heights calculated as women landed on the platform. With the genders pooled, anthropometry predicted a significant (p < 0.05) amount of variance from jump heights calculated from both takeoff and hang time. The anthropometry-vertical jump relationship was not significant from heights calculated as subjects landed on the platform, likely due to the female outliers. Yet anthropometric data of men did predict a significant amount of variance from heights calculated when they landed on the platform; univariate correlations of men's data revealed that UAL was the best predictor. It was concluded that the large sample of men's data led to greater data heterogeneity and a higher univariate correlation. Because of our sample size and data heterogeneity, practical applications suggest that coaches may find our results best predict performance for a variety of college-aged athletes and vertical jump enthusiasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0b013e31821d97c0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!