The bacterial merC gene from the Tn21-encoded mer operon is a potential molecular tool for improving the efficiency of metal phytoremediation. Arabidopsis SNARE molecules, including SYP111, SYP121, and AtVAM3 (SYP22), were attached to the C-terminus of MerC to target the protein to various organelles. The subcellular localization of transiently expressed GFP-fused MerC-SYP111, MerC-SYP121, and MerC-AtVAM3 was examined in Arabidopsis suspension-cultured cells. We found that GFP-MerC-SYP111 and GFP-MerC-SYP121 localized to the plasma membrane, whereas GFP-AtVAM3 localized to the vacuolar membranes. These results demonstrate that SYP111/SYP121 and AtVAM3 target foreign molecules to the plasma membrane and vacuolar membrane, respectively. To enhance the efficiency and potential of plants to sequester and accumulate cadmium from contaminated sites, transgenic Arabidopsis plants expressing MerC, MerC-SYP111, MerC-SYP121, or MerC-AtVAM3 were generated. The transgenic plants that expressed MerC, MerC-SYP121, or MerC-AtVAM3 appeared to be normal, whereas the transgenic that expressed MerC-SYP111 exhibited severe growth defects. The transgenic plants expressing merC-SYP121 were more resistant to cadmium than the wild type and accumulated significantly more cadmium. Thus, the expression of MerC-SYP121 in the plant plasma membrane may provide an ecologically compatible approach for the phytoremediation of cadmium pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-011-1543-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!