In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718735 | PMC |
http://dx.doi.org/10.1120/jacmp.v12i4.3590 | DOI Listing |
Tech Vasc Interv Radiol
December 2024
Department of Radiology, Mayo Clinic, Phoenix, AZ. Electronic address:
Trans-arterial interventions are an increasingly utilized approach for diagnosing and treating a wide range of pathologies, providing superior patient outcomes compared to traditional open surgical methods. Recent advancements in tracking and navigation technologies have significantly refined these interventions, enhancing procedural precision and success. Advanced imaging modalities, such as fluoroscopy, cone beam computed tomography (CBCT), and intravascular ultrasound (IVUS), are frequently used strategies offering critical real-time guidance.
View Article and Find Full Text PDFTech Vasc Interv Radiol
December 2024
Division of Interventional Radiology, Department of Radiology, Cleveland Clinic Foundation, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Cleveland, OH. Electronic address:
Interventional Radiology is at the forefront of integrating advanced imaging techniques and minimally-invasive procedures to enhance patient care. The advent of Digital Health Technologies (DHTs), including artificial intelligence (AI), robotics, and extended reality (XR), is revolutionizing healthcare, particularly in IR due to its reliance on innovative technology and advanced imaging. Since 2016, the proportion of these DHT-related publications in IR has consistently increased.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
This systematic review explores machine learning (ML) applications in surgical motion analysis using non-optical motion tracking systems (NOMTS), alone or with optical methods. It investigates objectives, experimental designs, model effectiveness, and future research directions. From 3632 records, 84 studies were included, with Artificial Neural Networks (38%) and Support Vector Machines (11%) being the most common ML models.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal.
In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!