Background: c-kit-positive, lineage-negative cardiac stem cells (CSCs) improve post-infarction left ventricular (LV) dysfunction when administered to animals. We undertook a phase 1 trial (Stem Cell Infusion in Patients with Ischemic cardiOmyopathy [SCIPIO]) of autologous CSCs for the treatment of heart failure resulting from ischaemic heart disease.
Methods: In stage A of the SCIPIO trial, patients with post-infarction LV dysfunction (ejection fraction [EF] ≤40%) before coronary artery bypass grafting were consecutively enrolled in the treatment and control groups. In stage B, patients were randomly assigned to the treatment or control group in a 2:3 ratio by use of a computer-generated block randomisation scheme. 1 million autologous CSCs were administered by intracoronary infusion at a mean of 113 days (SE 4) after surgery; controls were not given any treatment. Although the study was open label, the echocardiographic analyses were masked to group assignment. The primary endpoint was short-term safety of CSCs and the secondary endpoint was efficacy. A per-protocol analysis was used. This study is registered with ClinicalTrials.gov, number NCT00474461.
Findings: This study is still in progress. 16 patients were assigned to the treatment group and seven to the control group; no CSC-related adverse effects were reported. In 14 CSC-treated patients who were analysed, LVEF increased from 30·3% (SE 1·9) before CSC infusion to 38·5% (2·8) at 4 months after infusion (p=0·001). By contrast, in seven control patients, during the corresponding time interval, LVEF did not change (30·1% [2·4] at 4 months after CABG vs 30·2% [2·5] at 8 months after CABG). Importantly, the salubrious effects of CSCs were even more pronounced at 1 year in eight patients (eg, LVEF increased by 12·3 ejection fraction units [2·1] vs baseline, p=0·0007). In the seven treated patients in whom cardiac MRI could be done, infarct size decreased from 32·6 g (6·3) by 7·8 g (1·7; 24%) at 4 months (p=0·004) and 9·8 g (3·5; 30%) at 1 year (p=0·04).
Interpretation: These initial results in patients are very encouraging. They suggest that intracoronary infusion of autologous CSCs is effective in improving LV systolic function and reducing infarct size in patients with heart failure after myocardial infarction, and warrant further, larger, phase 2 studies.
Funding: University of Louisville Research Foundation and National Institutes of Health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614010 | PMC |
http://dx.doi.org/10.1016/S0140-6736(11)61590-0 | DOI Listing |
Curr Opin Biotechnol
August 2024
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA; Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA. Electronic address:
Immune cell therapies are an emerging class of living drugs that rely on the delivery of therapeutic transgenes to enhance, modulate, or restore cell function, such as those that encode for tumor-targeting receptors or replacement proteins. However, many cellular immunotherapies are autologous treatments that are limited by high manufacturing costs, typical vein-to-vein time of 3-4 weeks, and severe immune-related adverse effects. To address these issues, different classes of gene delivery vehicles are being developed to target specific immune cell subsets in vivo to address the limitations of ex vivo manufacturing, modulate therapeutic responses in situ, and reduce on- and off-target toxicity.
View Article and Find Full Text PDFCell Death Dis
November 2023
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
Cancer stem cells (CSCs) are believed to be crucial in the initiation, progression, and recurrence of cancer. CSCs are also known to be more resistant to cancer treatments. However, the interaction between CSCs and the immune microenvironment is complex and not fully understood.
View Article and Find Full Text PDFBiomed Pharmacother
May 2023
Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China. Electronic address:
Advanced ovarian cancer (OC) patients have limited benefit from current relevant cytotoxic and targeted therapies following debulking surgery. Therefore, new therapeutic strategies are in urgent need. Immunotherapy has shown great potential in tumor treatment, especially in tumor vaccine development.
View Article and Find Full Text PDFIran J Biotechnol
April 2022
Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Gastric cancer (GC) is a malignancy cause associated with a high death rate in the world. Cancer stem cells (CSCs) are a rare immortal subpopulation of cells within tumors with characteristics of the ability to self-renew, initiate tumor, and differentiate into defined progenies as well as and high resistance to conventional therapies.
Objectives: Despite the use of surgery and chemotherapy for GC therapy, there are no efficient therapeutic protocols for it to date.
Front Med (Lausanne)
December 2021
Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.
Cancer is maintained by the activity of a rare population of self-renewing "cancer stem cells" (CSCs), which are resistant to conventional therapies. CSCs over-express several proteins shared with induced pluripotent stem cells (iPSCs). We show here that allogenic or autologous murine iPSCs, combined with a histone deacetylase inhibitor (HDACi), are able to elicit major anti-tumor responses in a highly aggressive triple-negative breast cancer, as a relevant cancer stemness model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!