Unicompartmental knee arthroplasty (UKA) can achieve excellent clinical and functional results for patients having single-compartment osteoarthritis. However, UKA is considered to be technically challenging to perform, and malalignment of implant components significantly contributes to UKA failures. It has been shown that surgical navigation and tactile robotics could be used to provide very accurate component placement when the bones were rigidly fixed in a stereotactic frame during preparation. The purpose of this investigation was to determine the clinically realized accuracy of UKA component placement using surgical navigation and tactile robotics when the bones are free to move. A group of 20 knees receiving medial UKA with dynamically referenced tactile-robotic assistance was studied. Implant placement errors were comparable with those achieved using tactile robotics with rigid stereotactic fixation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arth.2011.09.021 | DOI Listing |
Research (Wash D C)
January 2025
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).
View Article and Find Full Text PDFFront Robot AI
January 2025
CREATE Lab, Institute of Mechanical Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Laboratory automation requires reliable and precise handling of microplates, but existing robotic systems often struggle to achieve this, particularly when navigating around the dynamic and variable nature of laboratory environments. This work introduces a novel method integrating simultaneous localization and mapping (SLAM), computer vision, and tactile feedback for the precise and autonomous placement of microplates. Implemented on a bi-manual mobile robot, the method achieves fine-positioning accuracies of 1.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!