A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery. | LitMetric

A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery.

Colloids Surf B Biointerfaces

Key laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China.

Published: March 2012

A double-targeted magnetic nanocarrier based with potential applications in the delivery of hydrophobic drugs has been developed. It consists of magnetite (Fe(3)O(4)) nanoparticles encapsulated in self-assembled micelles of the amphiphilic copolymer MPEG-PLGA [methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide)], and was fabricated using the solvent-evaporation technique. The magnetic nanocarrier has a very stable core-shell structure and is superparamagnetic. Its cytotoxicity was evaluated using the MTT assay with three cell lines-HeLa, MCF-7, and HT1080; it exhibited no cytotoxicity against any tested line at concentrations of up to 400 μg/mL after incubation for 24 h. Its cellular uptake was studied by Prussian blue staining and by fluorescence microscopy after encapsulating a fluorescent probe (hydrophobic quantum dots) into the nanocarrier. Finally, the magnetic targeting property of the magnetic nanocarrier was confirmed by an in vitro test. Overall, the results obtained demonstrate the potential of the double-targeted nanocarrier for the intracellular delivery of hydrophobic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2011.10.036DOI Listing

Publication Analysis

Top Keywords

magnetic nanocarrier
16
double-targeted magnetic
8
delivery hydrophobic
8
hydrophobic drugs
8
nanocarrier
6
nanocarrier potential
4
potential application
4
hydrophobic
4
application hydrophobic
4
hydrophobic drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!