GhostNet marine debris survey in the Gulf of Alaska--satellite guidance and aircraft observations.

Mar Pollut Bull

National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS), Center for Satellite Applications and Research (STAR), 5200 Auth Road, Camp Springs, MD 20746, USA.

Published: March 2012

Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2011.10.009DOI Listing

Publication Analysis

Top Keywords

marine debris
12
debris survey
8
survey gulf
8
derelict nets
8
debris
6
ghostnet marine
4
gulf alaska--satellite
4
alaska--satellite guidance
4
guidance aircraft
4
aircraft observations
4

Similar Publications

Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs).

View Article and Find Full Text PDF

The economic impacts of marine plastic debris in South Africa: A preliminary estimate.

Mar Pollut Bull

December 2024

Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.

Marine plastic debris can affect the delivery of ecosystem services and cause direct damage to affected industries; with resulting impacts on the economy. This paper applies a version of the benefits transfer method to provide a preliminary estimate of the economic impacts of marine plastic in South Africa, in terms of impacts on ecosystem services, direct damage to industry, and clean-up costs. The total economic impact associated with the plastic reaching South Africa's marine environment each year ranges between R3.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian .

View Article and Find Full Text PDF

Plastic debris in coastal environments usually undergoes weathering due to various environmental conditions. However, the weathering effects on exposed and shaded sides of the same plastics are underexplored. In this study, 1573 plastic fragments were collected from 15 coastal sites worldwide between December 2021 and December 2022, and weathering experiments were conducted outdoors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!