1,1'-Oxalyldiimidazole chemiluminescent enzyme immunoassay capable of simultaneously sensing multiple markers.

Biosens Bioelectron

Luminescent MD, LLC, 20140 Scholar Drive, Hagerstown, MD 21742, United States.

Published: February 2012

In order to rapidly and simultaneously quantify and screen trace levels of multiple biomarkers in a single sample, rapid 1,1'-oxalyldiimidazole chemiluminescence (ODI CL) was applied as a biosensor of immunoassays using various enzymes such as alkaline phosphatase (ALP) and horseradish peroxidise (HRP). (1) Fluorescein was formed from the reaction of fluorescein diphosphate (FDP) and immuno-complex conjugated with ALP. (2) Resorufin was formed from the reaction between Amplex Red and H(2)O(2) in the presence of immuno-complex conjugated with HRP. When ODI CL reagents (H(2)O(2) in isopropyl alcohol, ODI in ethyl acetate) were injected in a test tube or strip-well containing fluorescein and resorufin formed from above two reactions a bright CL emission spectrum having two peaks (518 nm for fluorescein and 602 nm for resorufin) was observed. The two peaks can be independently quantified with an appropriate statistical tool capable of deconvoluting multiple emission peaks. In conclusion, we expect that ODI chemiluminescent enzyme immunoassays (CLEIAs) using a couple of enzymes conjugated with antigen or antibody and substrates can rapidly and simultaneously quantify and screen multiple biomarkers in a single sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2011.10.052DOI Listing

Publication Analysis

Top Keywords

chemiluminescent enzyme
8
rapidly simultaneously
8
simultaneously quantify
8
quantify screen
8
multiple biomarkers
8
biomarkers single
8
single sample
8
formed reaction
8
immuno-complex conjugated
8
resorufin formed
8

Similar Publications

Ratiometric bioluminescent detection of Cu(II) ion based on differences in enzymatic reaction kinetics of two luciferase variants.

Talanta

January 2025

Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, 565-0871, Japan; SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan. Electronic address:

Heavy metal contamination in water bodies has raised global concerns due to its significant threats to both public health and ecosystem. Copper (Cu), one of the most widely used metals, is also an essential trace element in physiological systems. Excessive intake of Cu from water can cause toxicity, potentially resulting in serious health risks.

View Article and Find Full Text PDF

Background:  Systemic inflammation, metabolic dysregulation, and changes in biochemical markers are closely associated with the progression of lung cancer. This study focuses on evaluating serum parathyroid hormone (PTH), C-reactive protein (CRP), lipid profile parameters, and interleukin-6 (IL-6) in relation to the stages of lung cancer, exploring their potential as biomarkers for assessing disease severity.

Methods: A total of 160 lung cancer patients were selected for a cross-sectional study and equally distributed into four clinical stages (Stages 1-4).

View Article and Find Full Text PDF

A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).

View Article and Find Full Text PDF

Establishing Decisional Cutoff Values of Neurofilament Light Chains in Cerebrospinal Fluid Measured by Fully Automated Chemiluminescent Enzyme Immunoassay.

J Clin Lab Anal

January 2025

Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy.

Introduction: Neurofilament light chain (NfL) is one of the most important biomarkers in the field of clinical neurochemistry. Several analytical methods have been developed in the last decade. Recently, Fujirebio introduced a ready-to-use assay kit for measuring NfL levels in the cerebrospinal fluid (CSF) on the fully automated LUMIPULSE G System.

View Article and Find Full Text PDF

Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System.

ACS Synth Biol

January 2025

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States.

Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!