1. The effect of 5-hydroxytryptamine (5-HT) has been investigated on ovulation per se as well as on induced ovulation in rabbits. 2. 5-HT administered intracerebroventricularly (i.c.v.) did not induce ovulation per se. 3. The ovulation was induced by coitus, subcutaneous administration of progesterone and intravenous administration of cupric acetate. 4. Postcoital and progesterone induced ovulation was found to be blocked by i.c.v. administered 5-HT. 5. Cupric acetate induced ovulation was, however, not found to be blocked by i.c.v. administered 5-HT. 6. Intraperitoneal administration of 5-HT was found to block cupric acetate induced ovulation. 7. It is concluded that 5-HT exerts an inhibitory control over ovulation by acting at central as well as at peripheral sites in rabbits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.1990.tb01360.x | DOI Listing |
Endocrinology
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Oxidative stress is a significant factor in the death of granulosa cells (GCs), leading to follicular atresia and consequently limiting the number of dominant follicles that can mature and ovulate within each follicular wave. Follicular fluid contains a diverse array of metabolites that play crucial roles in regulating GCs' proliferation and oocyte maturation, which are essential for follicle development and female fertility. However, the mechanisms behind metabolite heterogeneity and its effects on GCs' function remain poorly understood.
View Article and Find Full Text PDFVet Sci
January 2025
School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil.
We investigated whether microalgae or linseed supply during the early postpartum period affects ovarian restimulation and supports the first postpartum ovulation in lactating anovulatory goats. Thirty-eight An-glo-Nubian-crossbred adult goats were allocated into three groups, one with a control diet ( = 12), fed a total mixed ration (TMR) comprising chopped elephant grass and concentrate; an algal diet ( = 13), fed TMR + green microalgae (1% dry matter); and a linseed diet ( = 13), TMR + linseed (12% dry matter). Supplements were furnished from the second to fifth week (time of weaning).
View Article and Find Full Text PDFReproduction
January 2025
W Liu, Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Serum progesterone may increase prior to ovulation trigger in in vitro fertilization patients, jeopardizing endometrial receptivity and therefore live birth rate. Recombinant FSH (rFSH) promotes progesterone production from human granulosa cells. Yet, the role of FSH on progesterone production need deeper exploration.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD levels in the ovaries could improve ovarian function in PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!