The main purpose of this work is to formulate self-microemulsifying drug delivery system (SMEDDS) using smaller molecular oil with Atorvastatin calcium as a model drug. Solubility of the selected drug was accessed in oils and surfactants. Percent transmittance (%T) test study was performed to identify the efficient self-microemulsifying formulations. Those formulations which showed higher value for %T were evaluated for droplet size, polydispersity index, ζ potential, refractive index and cloud point measurement. Effect of drug loading on droplet size, increasing dilution in different media, thermodynamic stability and in vitro dissolution was performed to observe the performance of the selected formulation. Further cytotoxicity and permeation enhancement studies were carried out on Caco2 cell lines. Of all the oils accessed for drug solubility, Capmul MCM showed higher solubility capacity for Atorvastatin calcium. Capmul MCM was better microemulsified using combination of Tween 20 and Labrasol surfactant. Droplet size was as low as 86.93 nm with polydispersity index and ζ potential at 0.195 ± 0.011 and -7.27 ± 3.11 mV respectively. The selected undiluted formulation showed refractive index values ranging from 1.40 to 1.47 indicating the isotropicity of the formulation. The selected formulation was robust to dilution in different media and thermodynamically stable. Dissolution profile was enhanced for the selected drug as compared to marketed formulation with t85% and DE values at 10 min and 80.15 respectively. Also cytotoxicity measurement showed minimum effect with good permeation enhancing capacity. Thus our study demonstrates the use of smaller molecular oil (Capmul MCM) for developing self-microemulsifying drug delivery system for better in vitro and in vivo performance.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2011.631548DOI Listing

Publication Analysis

Top Keywords

capmul mcm
16
smaller molecular
12
delivery system
12
droplet size
12
oil capmul
8
drug
8
self-microemulsifying drug
8
drug delivery
8
molecular oil
8
atorvastatin calcium
8

Similar Publications

Paclitaxel (PTX), a naturally occurring diterpenoid isolated from Taxus brevifolia, is a first-line drug for the treatment of glioblastoma; however, it suffers from the disadvantages of poor water solubility and nonspecific biodistribution, which cause serious side effects in the human body. The marketed formulation suffers from serious side effects, such as allergic reactions, neutropenia, and neuropathy, which require safe and effective formulations of PTX. In the present study, PTX was entrapped in a solid-liquid lipid mixture with the aid of a surfactant using a modified solvent evaporation technique.

View Article and Find Full Text PDF

Simvastatin and adenosine-co-loaded nanostructured lipid carriers for wound healing: Development, characterization and cell-based investigation.

Eur J Pharm Biopharm

December 2024

Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil. Electronic address:

Chronic wounds represent a significant global health burden, characterized by delayed skin healing and associated comorbidities. The present study aimed to develop nanostructured lipid carriers (NLCs) as a topical delivery system for the co-administration of simvastatin and adenosine to address chronic wound management. The rationale behind the co-delivery approach was to mitigate the cytotoxicity associated with high-dose simvastatin, while preserving its therapeutic benefits through a potential synergistic or additive effect.

View Article and Find Full Text PDF
Article Synopsis
  • Berberine hydrochloride (BH) is a beneficial compound with low oral bioavailability, prompting researchers to create a new delivery system called BH-loaded self-microemulsifying drug delivery system (BH-SMEDDS) to improve its effectiveness.
  • The optimal BH-SMEDDS formulation consisted of specific percentages of Capmul MCM, Kolliphor RH 40, and 1,2-propanediol, resulting in stable physicochemical properties and rapid self-emulsification.
  • In tests, the new delivery system showed a significant increase in BH release and achieved 1.63 times higher oral bioavailability than standard BH tablets, indicating its potential for better clinical use.
View Article and Find Full Text PDF

This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.

View Article and Find Full Text PDF

The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!