Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

Expert Rev Proteomics

Centre de Recherche du CHUQ ? Pavillon CHUL, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada.

Published: December 2011

PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1586/epr.11.63DOI Listing

Publication Analysis

Top Keywords

mass spectrometry-based
8
parp-1
7
spectrometry-based functional
4
functional proteomics
4
proteomics polyadp-ribose
4
polyadp-ribose polymerase-1
4
polymerase-1 parp-1
4
parp-1 abundant
4
abundant nuclear
4
nuclear protein
4

Similar Publications

The COVID-19 pandemic has significantly impacted global health, especially in vulnerable populations like kidney transplant recipients (KTRs). Recently, mass spectrometry-based proteomics has emerged as a powerful tool to shed light on a broad spectrum of dysregulated biological processes in KTRs with COVID-19. In this study, we prospectively collected blood samples from 17 COVID-19-positive KTRs and 10 non-infected KTRs between May and September 2020.

View Article and Find Full Text PDF

Kawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.

View Article and Find Full Text PDF

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

The effect of sexual dimorphism on the metabolism of patients with Parkinson's disease has not been clarified. A group of patients with Parkinson's disease and healthy controls were recruited, and their clinical characteristics and plasma were collected. Untargeted liquid chromatography-mass spectrometry-based plasma metabolomics profiling was performed.

View Article and Find Full Text PDF

Background: Disorders of lipid metabolism are critical factors in the progression of chronic lymphocytic leukemia (CLL). However, the characteristics of lipid metabolism and related regulatory mechanisms of CLL remain unclear.

Methods: Hence, we identified altered metabolites and aberrant lipid metabolism pathways in patients with CLL by ultra-high-performance liquid chromatography-mass spectrometry-based non-targeted lipidomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!