Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the research was to investigate the antiendotoxin effects of Sinomenine, Fangchinoline, Stachydrine, Chuanxionggzine, Oxymartrine and Evodiamine. Endothelial cells were challenged with 1 μg/mL LPS for 3 h then treated respectively with six alkaloids at three concentrations (1, 5 and 10 μg/mL). The cells were incubated at 37°C in a cell incubator for 21 h. The supernatants were collected and analyzed the levels of interleukin-1α (IL-1α), thromboxane B(2) (TXB(2)), endothelin-1 (ET-1) and E-selectin by ELISA kits. The results revealed that Sinomenine, Oxymartrine and Evodiamine inhibited the production of IL-1α; Stachydrine, Chuanxionggzine and Evodiamine inhibited the secretion of TXB(2); Sinomenine and Oxymartrine down-regulated ET-1 expression; Fangchinoline and Evodiamine decreased the level of E-selectin. All these changes were significant. Taken together, the data suggested that six alkaloids may effectively reduce inflammatory response via these cytokines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08820139.2011.626826 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!