A large number of polyester nanocomposite batches featuring different kinds of nanoclay surface modifiers and up to 6 wt % nanoclay were manufactured using a solvent-based technique. Montmorillonite platelets modified with ammonium ions of different chemical architectures were examined to study the effect of ammonium ions on the extent of surface reactions with long-chain fatty acids. The ammonium montmorillonite was first dispersed and suspended in acetone. This suspension was further esterificated with dotriacontanoic (lacceroic) acid to form high density brushes on the clay surface. This led to achieving higher basal plane spacing of the montmorillonite platelets due to the reduction of electrostatic interactions holding them. The outcome of the surface esterification was analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The esterificated ammonium-modified clays were then mixed by five different mixing strategies based on the use of a three-roll mill mixer (TRM) and/or ultrasonication (US) to obtain the desired polyester-nanoclay dispersion, intercalation, and exfoliation. The dispersion states of the modified nanoclay in polymer were characterized from XRD, scanning electron microscopy (SEM), and low and high magnification transmission electron microscopy (TEM). Mechanical, thermal, and barrier properties of the resulting composites were experimentally characterized. The Mori-Tanaka method along with an orientation distribution function was used to verify the experimental effective stiffness of the polyester nanocomposite systems. The aspect ratio of nanoclays and their level of intercalation and/or exfoliation after mixing were also confirmed by the comparison of the experimental diffusivity results with those of Fick's diffusion model. Systems having 4 and 6 wt % esterificated ammonium nanoclay and prepared according to a combined TRM/US mixing procedure showed optimal performance with balanced properties and processing ease, thereby showing potential for use in the automotive, transportation, and packaging industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la203331h | DOI Listing |
Biomed Mater
January 2025
Technical Department, Hebei Boshide Medical Devices Co.td, Changli, Konggang Industrial Park on the west side of Shenzhou Road (Zhongguancun Life Park Changli Kechuang Base B5), Qinhuangdao, Hebei Province 066000, People's Republic of China.
Medical antibacterial textiles play a vital role in tackling the issue of bacterial infection. Traditional surgical sutures face significant challenges due to wound infection caused by bacteria and breakage and scars caused by poor suture strength. Therefore, a new antibacterial and high-strength suture preparation strategy with wide clinical applicability was highly desired.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China, Zhengzhou, 450046, People's Republic of China.
Purpose: Doxorubicin (DOX) precipitates cell apoptosis in testicular tissues, and it is imperative to develop drugs to alleviate the spermatogenic disorders it causes. Thunb is often used to treat male sexual disorders. Eugenol, a major component of Thunb.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Simulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
Environmental issues have resulted in the forming of sustainable materials, including natural fiber-reinforced PLA composites; nonetheless, this composite has low water resistance, resulting in poor composite performance. This research aims to investigate the impact of adding a small amount of graphene nanoplatelets (GNP) on the water absorption (WA) characteristic of bamboo/kenaf-reinforced PLA hybrid composites. The physical behavior and water resistance of the composites, as well as the mechanical performance and surface after 14 days of immersion, were comprehensively investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Home and Art Design, Northeast Forestry University, Harbin 150000, China. Electronic address:
In this study, researchers synthesized sodium lignosulfonate (LS) modified multi-walled carbon nanotubes (L-MWCNTs) using a deep eutectic solvent (DES) method and incorporated them into polylactic acid (PLA) composite films using a solvent evaporation method. The nanofiller content ranged between 0.5 % and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!