The misreplication of damaged DNA is an important biological process that produces numerous adverse effects on human health. This report describes the synthesis and characterization of a non-natural nucleotide, designated 3-ethynyl-5-nitroindolyl-2'-deoxyriboside triphosphate (3-Eth-5-NITP), as a novel chemical reagent that can probe and quantify the misreplication of damaged DNA. We demonstrate that this non-natural nucleotide is efficiently inserted opposite an abasic site, a commonly formed and potentially mutagenic non-instructional DNA lesion. The strategic placement of the ethynyl moiety allows the incorporated nucleoside triphosphate to be selectively tagged with an azide-containing fluorophore using 'click' chemistry. This reaction provides a facile way to quantify the extent of nucleotide incorporation opposite non-instructional DNA lesions. In addition, the incorporation of 3-Eth-5-NITP is highly selective for an abasic site, and occurs even in the presence of a 50-fold molar excess of natural nucleotides. The biological applications of using 3-Eth-5-NITP as a chemical probe to monitor and quantify the misreplication of non-instructional DNA lesions are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3300027PMC
http://dx.doi.org/10.1093/nar/gkr980DOI Listing

Publication Analysis

Top Keywords

non-instructional dna
16
non-natural nucleotide
12
dna lesions
12
misreplication damaged
8
damaged dna
8
quantify misreplication
8
abasic site
8
dna
6
development 'clickable'
4
'clickable' non-natural
4

Similar Publications

Structural insights into the promutagenic bypass of the major cisplatin-induced DNA lesion.

Biochem J

March 2020

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A.

The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase β (polβ). In agreement, polβ overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype.

View Article and Find Full Text PDF

A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.

J Mol Biol

July 2017

Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, OH 44106, USA. Electronic address:

Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species.

View Article and Find Full Text PDF

The misreplication of damaged DNA is an important biological process that produces numerous adverse effects on human health. This report describes the synthesis and characterization of a non-natural nucleotide, designated 3-ethynyl-5-nitroindolyl-2'-deoxyriboside triphosphate (3-Eth-5-NITP), as a novel chemical reagent that can probe and quantify the misreplication of damaged DNA. We demonstrate that this non-natural nucleotide is efficiently inserted opposite an abasic site, a commonly formed and potentially mutagenic non-instructional DNA lesion.

View Article and Find Full Text PDF

This report examines the molecular mechanism by which high-fidelity DNA polymerases select nucleotides during the replication of an abasic site, a non-instructional DNA lesion. This was accomplished by synthesizing several unique 5-substituted indolyl 2'-deoxyribose triphosphates and defining their kinetic parameters for incorporation opposite an abasic site to interrogate the contributions of π-electron density and solvation energies. In general, the K(d, app) values for hydrophobic non-natural nucleotides are ∼10-fold lower than those measured for isosteric hydrophilic analogs.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) protein initiates Ig gene mutation by deaminating cytosines, converting them into uracils. Excision of AID-induced uracils by uracil-N-glycosylase is responsible for most transversion mutations at G:C base pairs. On the other hand, processing of AID-induced G:U mismatches by mismatch repair factors is responsible for most mutation at Ig A:T base pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!