We describe a new method for fabricating a capillary-type sensor, called a combinable poly(dimethyl siloxane) (PDMS) capillary (CPC) sensor. The method for preparing the CPC simplifies enzyme inhibitor assays into a simple, single step assay. The sample inhibitor solution is introduced by capillary action. This triggers the spontaneous dissolution of physically adsorbed fluorescent substrates, and the substrate mixes with the inhibitor. This is followed by competitive reaction with insoluble enzyme to give a fluorescence response. CPC is composed of a convex-shaped PDMS stick containing reagents immobilized in an insoluble coating, and a concave-shaped PDMS stick containing reagents immobilized in a soluble coating. Since the concave-shaped PDMS has a deeper channel than the convex structure, combining these PDMS sticks is like closing the zipper of a "freezer bag". This allows easy fabrication of "thin and long" capillary structures containing different reagents inside the same capillary, without the need for precise alignment. This method allows the immobilization of two reactive reagents, such as enzyme and substrate required for a single step assay, which are typically very difficult to immobilize using commercially available conventional capillaries. Furthermore, by simply arraying various CPCs, the CPC sensor allows multiple assays. Here, we carried out a single-step enzyme inhibitor assay using the CPC. In addition, two independent CPCs were arrayed to demonstrate multiple assaying of a protease inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20651f | DOI Listing |
Arch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.
Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.
View Article and Find Full Text PDFSci Rep
January 2025
Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.
View Article and Find Full Text PDFCell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFBiochem Genet
January 2025
Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.
The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!