Combinable poly(dimethyl siloxane) capillary sensor array for single-step and multiple enzyme inhibitor assays.

Lab Chip

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai City, Osaka 599-8531, Japan.

Published: January 2012

AI Article Synopsis

  • - The new combinable poly(dimethyl siloxane) (PDMS) capillary (CPC) sensor simplifies enzyme inhibitor assays by allowing a single-step process where the sample solution initiates a reaction that produces a fluorescence response, making it faster and easier to conduct tests.
  • - The CPC consists of two interlocking PDMS sticks with different coatings that enable the immobilization of reactive reagents like enzymes and substrates, overcoming challenges faced with traditional capillary methods.
  • - By arranging multiple CPCs, the method allows for simultaneous testing of different samples, showcasing its versatility through a successful assay of a protease inhibitor using two independent CPCs.

Article Abstract

We describe a new method for fabricating a capillary-type sensor, called a combinable poly(dimethyl siloxane) (PDMS) capillary (CPC) sensor. The method for preparing the CPC simplifies enzyme inhibitor assays into a simple, single step assay. The sample inhibitor solution is introduced by capillary action. This triggers the spontaneous dissolution of physically adsorbed fluorescent substrates, and the substrate mixes with the inhibitor. This is followed by competitive reaction with insoluble enzyme to give a fluorescence response. CPC is composed of a convex-shaped PDMS stick containing reagents immobilized in an insoluble coating, and a concave-shaped PDMS stick containing reagents immobilized in a soluble coating. Since the concave-shaped PDMS has a deeper channel than the convex structure, combining these PDMS sticks is like closing the zipper of a "freezer bag". This allows easy fabrication of "thin and long" capillary structures containing different reagents inside the same capillary, without the need for precise alignment. This method allows the immobilization of two reactive reagents, such as enzyme and substrate required for a single step assay, which are typically very difficult to immobilize using commercially available conventional capillaries. Furthermore, by simply arraying various CPCs, the CPC sensor allows multiple assays. Here, we carried out a single-step enzyme inhibitor assay using the CPC. In addition, two independent CPCs were arrayed to demonstrate multiple assaying of a protease inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1lc20651fDOI Listing

Publication Analysis

Top Keywords

enzyme inhibitor
12
combinable polydimethyl
8
polydimethyl siloxane
8
inhibitor assays
8
cpc sensor
8
single step
8
step assay
8
pdms stick
8
stick reagents
8
reagents immobilized
8

Similar Publications

Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.

View Article and Find Full Text PDF

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation.

Cell Signal

January 2025

Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:

Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.

View Article and Find Full Text PDF

APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway.

Biochem Genet

January 2025

Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.

The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!